mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 06:26:03 +00:00
Add new option to generate subtitles by a specific number of words (#1729)
* ADD parser for new argument --max_words_count * ADD max_words_count in words_options ADD warning for max_line_width compatibility * ADD logic for max_words_count * rename to max_words_per_line * make them kwargs * allow specifying file path by --model * black formatting --------- Co-authored-by: Jong Wook Kim <jongwook@nyu.edu>
This commit is contained in:
parent
b38a1f20f4
commit
6ed314fe41
@ -378,10 +378,17 @@ def transcribe(
|
||||
def cli():
|
||||
from . import available_models
|
||||
|
||||
def valid_model_name(name):
|
||||
if name in available_models() or os.path.exists(name):
|
||||
return name
|
||||
raise ValueError(
|
||||
f"model should be one of {available_models()} or path to a model checkpoint"
|
||||
)
|
||||
|
||||
# fmt: off
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
||||
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
|
||||
parser.add_argument("--model", default="small", type=valid_model_name, help="name of the Whisper model to use")
|
||||
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
||||
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
||||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||||
@ -412,6 +419,7 @@ def cli():
|
||||
parser.add_argument("--highlight_words", type=str2bool, default=False, help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt")
|
||||
parser.add_argument("--max_line_width", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of characters in a line before breaking the line")
|
||||
parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of lines in a segment")
|
||||
parser.add_argument("--max_words_per_line", type=optional_int, default=None, help="(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment")
|
||||
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
||||
# fmt: on
|
||||
|
||||
@ -444,17 +452,24 @@ def cli():
|
||||
model = load_model(model_name, device=device, download_root=model_dir)
|
||||
|
||||
writer = get_writer(output_format, output_dir)
|
||||
word_options = ["highlight_words", "max_line_count", "max_line_width"]
|
||||
word_options = [
|
||||
"highlight_words",
|
||||
"max_line_count",
|
||||
"max_line_width",
|
||||
"max_words_per_line",
|
||||
]
|
||||
if not args["word_timestamps"]:
|
||||
for option in word_options:
|
||||
if args[option]:
|
||||
parser.error(f"--{option} requires --word_timestamps True")
|
||||
if args["max_line_count"] and not args["max_line_width"]:
|
||||
warnings.warn("--max_line_count has no effect without --max_line_width")
|
||||
if args["max_words_per_line"] and args["max_line_width"]:
|
||||
warnings.warn("--max_words_per_line has no effect with --max_line_width")
|
||||
writer_args = {arg: args.pop(arg) for arg in word_options}
|
||||
for audio_path in args.pop("audio"):
|
||||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
||||
writer(result, audio_path, writer_args)
|
||||
writer(result, audio_path, **writer_args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
132
whisper/utils.py
132
whisper/utils.py
@ -74,7 +74,9 @@ class ResultWriter:
|
||||
def __init__(self, output_dir: str):
|
||||
self.output_dir = output_dir
|
||||
|
||||
def __call__(self, result: dict, audio_path: str, options: dict):
|
||||
def __call__(
|
||||
self, result: dict, audio_path: str, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
audio_basename = os.path.basename(audio_path)
|
||||
audio_basename = os.path.splitext(audio_basename)[0]
|
||||
output_path = os.path.join(
|
||||
@ -82,16 +84,20 @@ class ResultWriter:
|
||||
)
|
||||
|
||||
with open(output_path, "w", encoding="utf-8") as f:
|
||||
self.write_result(result, file=f, options=options)
|
||||
self.write_result(result, file=f, options=options, **kwargs)
|
||||
|
||||
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||
def write_result(
|
||||
self, result: dict, file: TextIO, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class WriteTXT(ResultWriter):
|
||||
extension: str = "txt"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||
def write_result(
|
||||
self, result: dict, file: TextIO, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
for segment in result["segments"]:
|
||||
print(segment["text"].strip(), file=file, flush=True)
|
||||
|
||||
@ -100,12 +106,24 @@ class SubtitlesWriter(ResultWriter):
|
||||
always_include_hours: bool
|
||||
decimal_marker: str
|
||||
|
||||
def iterate_result(self, result: dict, options: dict):
|
||||
raw_max_line_width: Optional[int] = options["max_line_width"]
|
||||
max_line_count: Optional[int] = options["max_line_count"]
|
||||
highlight_words: bool = options["highlight_words"]
|
||||
max_line_width = 1000 if raw_max_line_width is None else raw_max_line_width
|
||||
preserve_segments = max_line_count is None or raw_max_line_width is None
|
||||
def iterate_result(
|
||||
self,
|
||||
result: dict,
|
||||
options: Optional[dict] = None,
|
||||
*,
|
||||
max_line_width: Optional[int] = None,
|
||||
max_line_count: Optional[int] = None,
|
||||
highlight_words: bool = False,
|
||||
max_words_per_line: Optional[int] = None,
|
||||
):
|
||||
options = options or {}
|
||||
max_line_width = max_line_width or options.get("max_line_width")
|
||||
max_line_count = max_line_count or options.get("max_line_count")
|
||||
highlight_words = highlight_words or options.get("highlight_words", False)
|
||||
max_words_per_line = max_words_per_line or options.get("max_words_per_line")
|
||||
preserve_segments = max_line_count is None or max_line_width is None
|
||||
max_line_width = max_line_width or 1000
|
||||
max_words_per_line = max_words_per_line or 1000
|
||||
|
||||
def iterate_subtitles():
|
||||
line_len = 0
|
||||
@ -114,34 +132,50 @@ class SubtitlesWriter(ResultWriter):
|
||||
subtitle: list[dict] = []
|
||||
last = result["segments"][0]["words"][0]["start"]
|
||||
for segment in result["segments"]:
|
||||
for i, original_timing in enumerate(segment["words"]):
|
||||
timing = original_timing.copy()
|
||||
long_pause = not preserve_segments and timing["start"] - last > 3.0
|
||||
has_room = line_len + len(timing["word"]) <= max_line_width
|
||||
seg_break = i == 0 and len(subtitle) > 0 and preserve_segments
|
||||
if line_len > 0 and has_room and not long_pause and not seg_break:
|
||||
# line continuation
|
||||
line_len += len(timing["word"])
|
||||
else:
|
||||
# new line
|
||||
timing["word"] = timing["word"].strip()
|
||||
chunk_index = 0
|
||||
words_count = max_words_per_line
|
||||
while chunk_index < len(segment["words"]):
|
||||
remaining_words = len(segment["words"]) - chunk_index
|
||||
if max_words_per_line > len(segment["words"]) - chunk_index:
|
||||
words_count = remaining_words
|
||||
for i, original_timing in enumerate(
|
||||
segment["words"][chunk_index : chunk_index + words_count]
|
||||
):
|
||||
timing = original_timing.copy()
|
||||
long_pause = (
|
||||
not preserve_segments and timing["start"] - last > 3.0
|
||||
)
|
||||
has_room = line_len + len(timing["word"]) <= max_line_width
|
||||
seg_break = i == 0 and len(subtitle) > 0 and preserve_segments
|
||||
if (
|
||||
len(subtitle) > 0
|
||||
and max_line_count is not None
|
||||
and (long_pause or line_count >= max_line_count)
|
||||
or seg_break
|
||||
line_len > 0
|
||||
and has_room
|
||||
and not long_pause
|
||||
and not seg_break
|
||||
):
|
||||
# subtitle break
|
||||
yield subtitle
|
||||
subtitle = []
|
||||
line_count = 1
|
||||
elif line_len > 0:
|
||||
# line break
|
||||
line_count += 1
|
||||
timing["word"] = "\n" + timing["word"]
|
||||
line_len = len(timing["word"].strip())
|
||||
subtitle.append(timing)
|
||||
last = timing["start"]
|
||||
# line continuation
|
||||
line_len += len(timing["word"])
|
||||
else:
|
||||
# new line
|
||||
timing["word"] = timing["word"].strip()
|
||||
if (
|
||||
len(subtitle) > 0
|
||||
and max_line_count is not None
|
||||
and (long_pause or line_count >= max_line_count)
|
||||
or seg_break
|
||||
):
|
||||
# subtitle break
|
||||
yield subtitle
|
||||
subtitle = []
|
||||
line_count = 1
|
||||
elif line_len > 0:
|
||||
# line break
|
||||
line_count += 1
|
||||
timing["word"] = "\n" + timing["word"]
|
||||
line_len = len(timing["word"].strip())
|
||||
subtitle.append(timing)
|
||||
last = timing["start"]
|
||||
chunk_index += max_words_per_line
|
||||
if len(subtitle) > 0:
|
||||
yield subtitle
|
||||
|
||||
@ -190,9 +224,11 @@ class WriteVTT(SubtitlesWriter):
|
||||
always_include_hours: bool = False
|
||||
decimal_marker: str = "."
|
||||
|
||||
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||
def write_result(
|
||||
self, result: dict, file: TextIO, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
print("WEBVTT\n", file=file)
|
||||
for start, end, text in self.iterate_result(result, options):
|
||||
for start, end, text in self.iterate_result(result, options, **kwargs):
|
||||
print(f"{start} --> {end}\n{text}\n", file=file, flush=True)
|
||||
|
||||
|
||||
@ -201,9 +237,11 @@ class WriteSRT(SubtitlesWriter):
|
||||
always_include_hours: bool = True
|
||||
decimal_marker: str = ","
|
||||
|
||||
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||
def write_result(
|
||||
self, result: dict, file: TextIO, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
for i, (start, end, text) in enumerate(
|
||||
self.iterate_result(result, options), start=1
|
||||
self.iterate_result(result, options, **kwargs), start=1
|
||||
):
|
||||
print(f"{i}\n{start} --> {end}\n{text}\n", file=file, flush=True)
|
||||
|
||||
@ -220,7 +258,9 @@ class WriteTSV(ResultWriter):
|
||||
|
||||
extension: str = "tsv"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||
def write_result(
|
||||
self, result: dict, file: TextIO, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
print("start", "end", "text", sep="\t", file=file)
|
||||
for segment in result["segments"]:
|
||||
print(round(1000 * segment["start"]), file=file, end="\t")
|
||||
@ -231,7 +271,9 @@ class WriteTSV(ResultWriter):
|
||||
class WriteJSON(ResultWriter):
|
||||
extension: str = "json"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||
def write_result(
|
||||
self, result: dict, file: TextIO, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
json.dump(result, file)
|
||||
|
||||
|
||||
@ -249,9 +291,11 @@ def get_writer(
|
||||
if output_format == "all":
|
||||
all_writers = [writer(output_dir) for writer in writers.values()]
|
||||
|
||||
def write_all(result: dict, file: TextIO, options: dict):
|
||||
def write_all(
|
||||
result: dict, file: TextIO, options: Optional[dict] = None, **kwargs
|
||||
):
|
||||
for writer in all_writers:
|
||||
writer(result, file, options)
|
||||
writer(result, file, options, **kwargs)
|
||||
|
||||
return write_all
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user