mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 06:26:03 +00:00
Merge c1031a5787e7f21b789e9b84309d443d2fc7188a into c0d2f624c09dc18e709e37c2ad90c039a4eb72a2
This commit is contained in:
commit
705b925bbf
@ -52,6 +52,7 @@ def transcribe(
|
|||||||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
||||||
clip_timestamps: Union[str, List[float]] = "0",
|
clip_timestamps: Union[str, List[float]] = "0",
|
||||||
hallucination_silence_threshold: Optional[float] = None,
|
hallucination_silence_threshold: Optional[float] = None,
|
||||||
|
mel_spectrogram_device: Optional[Union[str, torch.device]] = None,
|
||||||
**decode_options,
|
**decode_options,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
@ -119,6 +120,9 @@ def transcribe(
|
|||||||
When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
|
When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
|
||||||
when a possible hallucination is detected
|
when a possible hallucination is detected
|
||||||
|
|
||||||
|
mel_spectrogram_device: Optional[Union[str, torch.device]]
|
||||||
|
If given, the audio tensor is moved to this device before STFT
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
||||||
@ -136,7 +140,9 @@ def transcribe(
|
|||||||
decode_options["fp16"] = False
|
decode_options["fp16"] = False
|
||||||
|
|
||||||
# Pad 30-seconds of silence to the input audio, for slicing
|
# Pad 30-seconds of silence to the input audio, for slicing
|
||||||
mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
|
mel = log_mel_spectrogram(
|
||||||
|
audio, model.dims.n_mels, padding=N_SAMPLES, device=mel_spectrogram_device
|
||||||
|
)
|
||||||
content_frames = mel.shape[-1] - N_FRAMES
|
content_frames = mel.shape[-1] - N_FRAMES
|
||||||
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)
|
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user