mirror of
https://github.com/openai/whisper.git
synced 2025-07-05 11:32:30 +00:00
Drop ffmpeg-python dependency and call ffmpeg directly. (#1242)
* Drop ffmpeg-python dependency and call ffmpeg directly. The last ffmpeg-python module release was in 2019[1], upstream seem to be unavailable[2] and the project development seem to have stagnated[3]. As the features it provide is trivial to replace using the Python native subprocess module, drop the dependency. [1] <URL: https://github.com/kkroening/ffmpeg-python/tags > [2] <URL: https://github.com/kkroening/ffmpeg-python/issues/760 > [3] <URL: https://openhub.net/p/ffmpeg-python > * Rewrote to use subprocess.run() instead of subprocess.Popen(). * formatting changes * formatting update * isort fix * Error checking * isort 🤦🏻 * flake8 fix * minor spelling changes --------- Co-authored-by: Jong Wook Kim <jongwook@openai.com>
This commit is contained in:
parent
e69930cb9c
commit
8035e9ef48
@ -17,9 +17,7 @@ A Transformer sequence-to-sequence model is trained on various speech processing
|
|||||||
|
|
||||||
## Setup
|
## Setup
|
||||||
|
|
||||||
|
We used Python 3.9.9 and [PyTorch](https://pytorch.org/) 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.8-3.11 and recent PyTorch versions. The codebase also depends on a few Python packages, most notably [OpenAI's tiktoken](https://github.com/openai/tiktoken) for their fast tokenizer implementation. You can download and install (or update to) the latest release of Whisper with the following command:
|
||||||
We used Python 3.9.9 and [PyTorch](https://pytorch.org/) 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.8-3.11 and recent PyTorch versions. The codebase also depends on a few Python packages, most notably [OpenAI's tiktoken](https://github.com/openai/tiktoken) for their fast tokenizer implementation and [ffmpeg-python](https://github.com/kkroening/ffmpeg-python) for reading audio files. You can download and install (or update to) the latest release of Whisper with the following command:
|
|
||||||
|
|
||||||
|
|
||||||
pip install -U openai-whisper
|
pip install -U openai-whisper
|
||||||
|
|
||||||
|
@ -4,4 +4,3 @@ torch
|
|||||||
tqdm
|
tqdm
|
||||||
more-itertools
|
more-itertools
|
||||||
tiktoken==0.3.3
|
tiktoken==0.3.3
|
||||||
ffmpeg-python==0.2.0
|
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
import os
|
import os
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
|
from subprocess import CalledProcessError, run
|
||||||
from typing import Optional, Union
|
from typing import Optional, Union
|
||||||
|
|
||||||
import ffmpeg
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
@ -39,15 +39,25 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
|||||||
-------
|
-------
|
||||||
A NumPy array containing the audio waveform, in float32 dtype.
|
A NumPy array containing the audio waveform, in float32 dtype.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# This launches a subprocess to decode audio while down-mixing
|
||||||
|
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||||||
|
# fmt: off
|
||||||
|
cmd = [
|
||||||
|
"ffmpeg",
|
||||||
|
"-nostdin",
|
||||||
|
"-threads", "0",
|
||||||
|
"-i", file,
|
||||||
|
"-f", "s16le",
|
||||||
|
"-ac", "1",
|
||||||
|
"-acodec", "pcm_s16le",
|
||||||
|
"-ar", str(sr),
|
||||||
|
"-"
|
||||||
|
]
|
||||||
|
# fmt: on
|
||||||
try:
|
try:
|
||||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
out = run(cmd, capture_output=True, check=True).stdout
|
||||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
except CalledProcessError as e:
|
||||||
out, _ = (
|
|
||||||
ffmpeg.input(file, threads=0)
|
|
||||||
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
|
||||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
|
||||||
)
|
|
||||||
except ffmpeg.Error as e:
|
|
||||||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||||
|
|
||||||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
||||||
|
Loading…
x
Reference in New Issue
Block a user