diff --git a/whisper/transcribe.py b/whisper/transcribe.py index 3c510e7..f25dd35 100644 --- a/whisper/transcribe.py +++ b/whisper/transcribe.py @@ -42,7 +42,7 @@ def transcribe( verbose: Optional[bool] = None, temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), compression_ratio_threshold: Optional[float] = 2.4, - compression_ratio_halucination_threshold: Optional[float] = 3, + compression_ratio_hallucination_threshold: Optional[float] = 3, logprob_threshold: Optional[float] = -1.0, no_speech_threshold: Optional[float] = 0.6, condition_on_previous_text: bool = True, @@ -76,7 +76,7 @@ def transcribe( compression_ratio_threshold: float If the gzip compression ratio is above this value, treat as failed - compression_ratio_halcination_threshold: float + compression_ratio_hallucination_threshold: float If the gzip compression ratio is above this value after all attempts to decode, treat as a halucination and skip logprob_threshold: float @@ -106,11 +106,6 @@ def transcribe( "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those word correctly. - carry_initial_prompt: bool - If carry_initial_prompt is True, `initial_prompt` is prepended to the prompt of each internal - `decode()` call. If there is not enough context space at the start of the prompt, it is - left-sliced to make space. - decode_options: dict Keyword arguments to construct `DecodingOptions` instances @@ -220,12 +215,14 @@ def transcribe( ): needs_fallback = False # silence if ( - compression_ratio_halucination_threshold is not None - and decode_result.compression_ratio > compression_ratio_halucination_threshold + compression_ratio_hallucination_threshold is not None + and decode_result.compression_ratio > compression_ratio_hallucination_threshold and t == temperatures[-1] ): # Discard the segment continue # Skip to the next segment + + if not needs_fallback: break @@ -243,11 +240,9 @@ def transcribe( all_segments = [] prompt_reset_since = 0 - remaining_prompt_length = model.dims.n_text_ctx // 2 - 1 if initial_prompt is not None: initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip()) all_tokens.extend(initial_prompt_tokens) - remaining_prompt_length -= len(initial_prompt_tokens) else: initial_prompt_tokens = [] @@ -293,13 +288,7 @@ def transcribe( segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype) - if carry_initial_prompt: - nignored = max(len(initial_prompt_tokens), prompt_reset_since) - remaining_prompt = all_tokens[nignored:][-remaining_prompt_length:] - decode_options["prompt"] = initial_prompt_tokens + remaining_prompt - else: - decode_options["prompt"] = all_tokens[prompt_reset_since:] - + decode_options["prompt"] = all_tokens[prompt_reset_since:] result: DecodingResult = decode_with_fallback(mel_segment) tokens = torch.tensor(result.tokens) @@ -553,8 +542,6 @@ def cli(): parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations") parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.") - parser.add_argument("--carry_initial_prompt", type=str2bool, default=False, help="if True, prepend initial_prompt to every internal decode() call. May reduce the effectiveness of condition_on_previous_text") - parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop") parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")