mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 06:26:03 +00:00
Merge 8d6e0e5e1af80e81f3ef1d0122a58473afdabdcd into 173ff7dd1d9fb1c4fddea0d41d704cfefeb8908c
This commit is contained in:
commit
9183f260e9
126
whisper/audio.py
126
whisper/audio.py
@ -20,39 +20,48 @@ N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram
|
|||||||
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
||||||
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
||||||
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
||||||
|
|
||||||
|
|
||||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||||
"""
|
"""
|
||||||
Open an audio file and read as mono waveform, resampling as necessary
|
Loads an audio file as a mono waveform, resampling to the specified sample rate.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
file: str
|
file : str
|
||||||
The audio file to open
|
Path to the audio file.
|
||||||
|
sr : int, optional
|
||||||
sr: int
|
Target sample rate for resampling, defaults to SAMPLE_RATE.
|
||||||
The sample rate to resample the audio if necessary
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
A NumPy array containing the audio waveform, in float32 dtype.
|
np.ndarray
|
||||||
|
1D NumPy array of the audio waveform, normalized between -1 and 1.
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
RuntimeError
|
||||||
|
If the audio cannot be loaded.
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
Requires ffmpeg installed and accessible in the system's PATH.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# This launches a subprocess to decode audio while down-mixing
|
# This launches a subprocess to decode audio while down-mixing
|
||||||
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||||||
# fmt: off
|
# fmt: off
|
||||||
|
|
||||||
cmd = [
|
cmd = [
|
||||||
"ffmpeg",
|
"ffmpeg", # Command to run the ffmpeg tool.
|
||||||
"-nostdin",
|
"-nostdin", # Prevents ffmpeg from reading from stdin.
|
||||||
"-threads", "0",
|
"-threads", "0", # Uses all available CPU cores for processing.
|
||||||
"-i", file,
|
"-i", file, # Specifies the input file path.
|
||||||
"-f", "s16le",
|
"-f", "s16le", # Sets the output format to 16-bit PCM.
|
||||||
"-ac", "1",
|
"-ac", "1", # Converts audio to mono (1 channel).
|
||||||
"-acodec", "pcm_s16le",
|
"-acodec", "pcm_s16le", # Specifies the audio codec as PCM signed 16-bit little-endian.
|
||||||
"-ar", str(sr),
|
"-ar", str(sr), # Resamples the audio to the specified sample rate.
|
||||||
"-"
|
"-" # Outputs the processed audio to stdout.
|
||||||
]
|
]
|
||||||
|
|
||||||
# fmt: on
|
# fmt: on
|
||||||
try:
|
try:
|
||||||
out = run(cmd, capture_output=True, check=True).stdout
|
out = run(cmd, capture_output=True, check=True).stdout
|
||||||
@ -63,8 +72,22 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
|||||||
|
|
||||||
|
|
||||||
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
Pads or trims the input array to a specified length along the given axis.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- array: Input array (torch.Tensor or np.ndarray).
|
||||||
|
- length: Target length along the specified axis (default is N_SAMPLES).
|
||||||
|
- axis: Axis to pad or trim (default is -1 for the last axis).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- The modified array, either padded with zeros or trimmed to the target length.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
- The function handles both PyTorch tensors and NumPy arrays, applying appropriate methods
|
||||||
|
for padding and trimming depending on the array type.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if torch.is_tensor(array):
|
if torch.is_tensor(array):
|
||||||
if array.shape[axis] > length:
|
if array.shape[axis] > length:
|
||||||
@ -91,14 +114,30 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
|||||||
@lru_cache(maxsize=None)
|
@lru_cache(maxsize=None)
|
||||||
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
Loads a precomputed Mel filterbank matrix for converting STFT to a Mel spectrogram.
|
||||||
Allows decoupling librosa dependency; saved using:
|
|
||||||
|
|
||||||
np.savez_compressed(
|
Parameters
|
||||||
"mel_filters.npz",
|
----------
|
||||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
device : torch.device
|
||||||
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
|
The device (CPU or GPU) to load the tensor onto.
|
||||||
)
|
n_mels : int
|
||||||
|
The number of Mel bands, must be either 80 or 128.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
torch.Tensor
|
||||||
|
A tensor containing the Mel filterbank matrix.
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
AssertionError
|
||||||
|
If `n_mels` is not supported.
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
The Mel filterbank matrices are saved in a compressed npz file, which decouples
|
||||||
|
the dependency on librosa for generating these filters.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
||||||
|
|
||||||
@ -114,27 +153,32 @@ def log_mel_spectrogram(
|
|||||||
device: Optional[Union[str, torch.device]] = None,
|
device: Optional[Union[str, torch.device]] = None,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Compute the log-Mel spectrogram of
|
Computes the log-Mel spectrogram of an audio waveform.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
audio : Union[str, np.ndarray, torch.Tensor]
|
||||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
The audio input, either as a file path, NumPy array, or Torch tensor.
|
||||||
|
The waveform should be in 16 kHz.
|
||||||
n_mels: int
|
n_mels : int, optional
|
||||||
The number of Mel-frequency filters, only 80 is supported
|
The number of Mel-frequency filters, only 80 is supported. Defaults to 80.
|
||||||
|
padding : int, optional
|
||||||
padding: int
|
Number of zero samples to pad at the end of the audio. Defaults to 0.
|
||||||
Number of zero samples to pad to the right
|
device : Optional[Union[str, torch.device]], optional
|
||||||
|
The device to perform computations on. If provided, the audio tensor is moved
|
||||||
device: Optional[Union[str, torch.device]]
|
to this device. Defaults to None.
|
||||||
If given, the audio tensor is moved to this device before STFT
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
torch.Tensor, shape = (80, n_frames)
|
torch.Tensor
|
||||||
A Tensor that contains the Mel spectrogram
|
A tensor containing the Mel spectrogram with shape (80, n_frames).
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
The function expects a 16 kHz sampling rate for the input audio and uses a Hann
|
||||||
|
window for the Short-Time Fourier Transform (STFT).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if not torch.is_tensor(audio):
|
if not torch.is_tensor(audio):
|
||||||
if isinstance(audio, str):
|
if isinstance(audio, str):
|
||||||
audio = load_audio(audio)
|
audio = load_audio(audio)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user