Merge 8d6e0e5e1af80e81f3ef1d0122a58473afdabdcd into 173ff7dd1d9fb1c4fddea0d41d704cfefeb8908c

This commit is contained in:
meSalim21 2024-11-13 14:19:06 +01:00 committed by GitHub
commit 9183f260e9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -20,39 +20,48 @@ N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Loads an audio file as a mono waveform, resampling to the specified sample rate.
Parameters
----------
file : str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Path to the audio file.
sr : int, optional
Target sample rate for resampling, defaults to SAMPLE_RATE.
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
np.ndarray
1D NumPy array of the audio waveform, normalized between -1 and 1.
Raises
------
RuntimeError
If the audio cannot be loaded.
Notes
-----
Requires ffmpeg installed and accessible in the system's PATH.
"""
# This launches a subprocess to decode audio while down-mixing
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
# fmt: off
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", file,
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"-"
"ffmpeg", # Command to run the ffmpeg tool.
"-nostdin", # Prevents ffmpeg from reading from stdin.
"-threads", "0", # Uses all available CPU cores for processing.
"-i", file, # Specifies the input file path.
"-f", "s16le", # Sets the output format to 16-bit PCM.
"-ac", "1", # Converts audio to mono (1 channel).
"-acodec", "pcm_s16le", # Specifies the audio codec as PCM signed 16-bit little-endian.
"-ar", str(sr), # Resamples the audio to the specified sample rate.
"-" # Outputs the processed audio to stdout.
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
@ -63,8 +72,22 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
Pads or trims the input array to a specified length along the given axis.
Parameters:
- array: Input array (torch.Tensor or np.ndarray).
- length: Target length along the specified axis (default is N_SAMPLES).
- axis: Axis to pad or trim (default is -1 for the last axis).
Returns:
- The modified array, either padded with zeros or trimmed to the target length.
Note:
- The function handles both PyTorch tensors and NumPy arrays, applying appropriate methods
for padding and trimming depending on the array type.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
@ -91,14 +114,30 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
Loads a precomputed Mel filterbank matrix for converting STFT to a Mel spectrogram.
Parameters
----------
device : torch.device
The device (CPU or GPU) to load the tensor onto.
n_mels : int
The number of Mel bands, must be either 80 or 128.
Returns
-------
torch.Tensor
A tensor containing the Mel filterbank matrix.
Raises
------
AssertionError
If `n_mels` is not supported.
Notes
-----
The Mel filterbank matrices are saved in a compressed npz file, which decouples
the dependency on librosa for generating these filters.
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
)
"""
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
@ -114,27 +153,32 @@ def log_mel_spectrogram(
device: Optional[Union[str, torch.device]] = None,
):
"""
Compute the log-Mel spectrogram of
Computes the log-Mel spectrogram of an audio waveform.
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 is supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
audio : Union[str, np.ndarray, torch.Tensor]
The audio input, either as a file path, NumPy array, or Torch tensor.
The waveform should be in 16 kHz.
n_mels : int, optional
The number of Mel-frequency filters, only 80 is supported. Defaults to 80.
padding : int, optional
Number of zero samples to pad at the end of the audio. Defaults to 0.
device : Optional[Union[str, torch.device]], optional
The device to perform computations on. If provided, the audio tensor is moved
to this device. Defaults to None.
Returns
-------
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
torch.Tensor
A tensor containing the Mel spectrogram with shape (80, n_frames).
Notes
-----
The function expects a 16 kHz sampling rate for the input audio and uses a Hann
window for the Short-Time Fourier Transform (STFT).
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)