update plot

This commit is contained in:
Amal Jacob 2025-01-31 13:02:26 -08:00
parent a85bcadd43
commit 97b718e75c

View File

@ -309,43 +309,39 @@ class Whisper(nn.Module):
return attn_maps return attn_maps
def plot_attention_on_padded(self, seq_length: int = 100): def plot_attention_distribution(self, seq_length: int = 100):
"""Plots attention weights focusing on padded regions.""" """Plots attention distribution over sequence length."""
attn_maps = self.get_attention_weights() attn_maps = self.get_attention_weights()
if not attn_maps: if not attn_maps:
print("No attention weights found!") print("No attention weights found!")
return return
# Convert list to NumPy array # Convert to numpy array and print shape
attn_maps = np.array(attn_maps) attn_maps = np.array(attn_maps)
print(f"Attention Maps Shape: {attn_maps.shape}")
# Print debug info # Average over layers and heads to get per-token attention
print(f"Attention Maps Shape (Before Averaging): {attn_maps.shape}") avg_attn = np.mean(attn_maps, axis=(0, 2)) # Shape: (batch, seq_len, seq_len)
# Average over layers and heads print(f"Averaged Attention Shape: {avg_attn.shape}")
avg_attn = np.mean(attn_maps, axis=(0, 2)) # Shape: (batch, ?, seq_len)
print(f"Averaged Attention Shape (Before Squeeze): {avg_attn.shape}") # Remove batch dim if present
avg_attn = np.squeeze(avg_attn)
# Squeeze to remove any extra singleton dimensions # Extract the attention scores to the first token in each position
avg_attn = np.squeeze(avg_attn) # Removes batch dim token_attention = np.mean(avg_attn, axis=0) # Shape: (seq_len,)
print(f"Averaged Attention Shape (After Squeeze): {avg_attn.shape}") # Ensure we only plot up to `seq_length`
token_attention = token_attention[:seq_length]
x_positions = np.arange(len(token_attention))
# Ensure correct shape # Plot attention distribution as spikes
if avg_attn.ndim == 1: # If still incorrect (seq_len,) plt.figure(figsize=(12, 4))
avg_attn = avg_attn.reshape((1, -1)) # Force into 2D shape for heatmap plt.bar(x_positions, token_attention, width=1.5, alpha=0.7)
plt.xlabel("Token Position")
# Ensure shape matches seq_length plt.ylabel("Attention Score")
avg_attn = avg_attn[:seq_length, :seq_length] # Truncate to fit expected size plt.title("Attention Distribution Over Sequence")
# Plot heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(avg_attn, cmap="Blues", annot=False)
plt.xlabel("Input Positions")
plt.ylabel("Output Positions")
plt.title("Attention Weights on Padded Regions")
plt.show() plt.show()