plot cross attention now instead of self attention

This commit is contained in:
Amal Jacob 2025-01-31 14:22:44 -08:00
parent 5e4fcc115b
commit 9be139c1ec

View File

@ -175,7 +175,6 @@ class ResidualAttentionBlock(nn.Module):
cross_out, cross_attn_weights = self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)
x = x + cross_out
self.cross_attn.attn_weights = cross_attn_weights # Store weights
print(self.cross_attn.attn_weights)
x = x + self.mlp(self.mlp_ln(x))
return x
@ -315,7 +314,7 @@ class Whisper(nn.Module):
return attn_maps
def plot_attention_distribution(self, seq_length: int = 1500):
"""Plots decoder cross-attention distribution over sequence length."""
"""Plots decoder cross-attention distribution over the full 1500-token audio sequence."""
attn_maps = self.get_attention_weights()
if not attn_maps:
@ -324,34 +323,26 @@ class Whisper(nn.Module):
# Convert to NumPy array
attn_maps = np.array(attn_maps)
print(f"Cross-Attention Maps Shape: {attn_maps.shape}") # (layers, batch, heads, seq_len, audio_seq_len)
print(f"Cross-Attention Maps Shape: {attn_maps.shape}") # (layers, batch, heads, 1, audio_seq_len)
# Average over layers and heads
avg_attn = np.mean(attn_maps, axis=(0, 2)) # Expected shape: (batch, seq_len, audio_seq_len)
# Average over layers and heads, but **keep** last two dimensions
avg_attn = np.mean(attn_maps, axis=(0, 2)) # Shape: (batch, 1, audio_seq_len)
print(f"Averaged Cross-Attention Shape (Before Squeeze): {avg_attn.shape}")
# Remove batch and singleton dimensions
avg_attn = np.squeeze(avg_attn)
# Remove singleton dimensions
avg_attn = np.squeeze(avg_attn, axis=(0, 1)) # Shape: (audio_seq_len,)
print(f"Averaged Cross-Attention Shape (After Squeeze): {avg_attn.shape}")
# Get attention over **audio sequence (1500 tokens)**
real_seq_length = avg_attn.shape[-1] # Ensure we're using full audio sequence
# Ensure correct sequence length
real_seq_length = avg_attn.shape[0]
print(f"Real Sequence Length Detected: {real_seq_length}")
# Extract mean attention for each audio token
token_attention = np.mean(avg_attn, axis=0) # Shape: (audio_seq_len,)
print(f"Token Attention Shape: {token_attention.shape}")
if token_attention.ndim == 0: # Prevents empty scalar error
print("Error: token_attention is a scalar. Fixing shape issue.")
token_attention = avg_attn.mean(axis=-1) # Alternative averaging
# Ensure we plot the full available sequence length
# Prevent out-of-bounds errors
seq_length = min(seq_length, real_seq_length)
token_attention = token_attention[:seq_length]
x_positions = np.arange(len(token_attention))
token_attention = avg_attn[:seq_length]
# Plot the cross-attention distribution
# Plot the attention distribution
x_positions = np.arange(len(token_attention))
plt.figure(figsize=(12, 4))
plt.bar(x_positions, token_attention, width=1.5, alpha=0.7)
plt.xlabel("Audio Token Position")
@ -364,6 +355,7 @@ class Whisper(nn.Module):
@property
def device(self):
return next(self.parameters()).device