mirror of
https://github.com/openai/whisper.git
synced 2025-03-30 14:28:27 +00:00
add progress bar for transcribe loop (#100)
* add progress bar to transcribe loop * improved warning message for English-only models * add --condition_on_previous_text * progressbar renames Co-authored-by: Jong Wook Kim <jongwook@nyu.edu>
This commit is contained in:
parent
5d8d3e75a4
commit
9e7e418ff1
@ -5,6 +5,7 @@ from typing import List, Optional, Tuple, Union, TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram
|
||||
from .decoding import DecodingOptions, DecodingResult
|
||||
@ -87,7 +88,7 @@ def transcribe(
|
||||
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
|
||||
_, probs = model.detect_language(segment)
|
||||
decode_options["language"] = max(probs, key=probs.get)
|
||||
print(f"Detected language: {LANGUAGES[decode_options['language']]}")
|
||||
print(f"Detected language: {LANGUAGES[decode_options['language']].title()}")
|
||||
|
||||
mel = mel.unsqueeze(0)
|
||||
language = decode_options["language"]
|
||||
@ -160,72 +161,81 @@ def transcribe(
|
||||
if verbose:
|
||||
print(f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}")
|
||||
|
||||
while seek < mel.shape[-1]:
|
||||
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
||||
segment = pad_or_trim(mel[:, :, seek:], N_FRAMES).to(model.device).to(dtype)
|
||||
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
|
||||
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
|
||||
num_frames = mel.shape[-1]
|
||||
previous_seek_value = seek
|
||||
|
||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||||
result = decode_with_fallback(segment)[0]
|
||||
tokens = torch.tensor(result.tokens)
|
||||
with tqdm.tqdm(total=num_frames, unit='frames', disable=verbose) as pbar:
|
||||
while seek < num_frames:
|
||||
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
||||
segment = pad_or_trim(mel[:, :, seek:], N_FRAMES).to(model.device).to(dtype)
|
||||
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
|
||||
|
||||
if no_speech_threshold is not None:
|
||||
# no voice activity check
|
||||
should_skip = result.no_speech_prob > no_speech_threshold
|
||||
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
|
||||
# don't skip if the logprob is high enough, despite the no_speech_prob
|
||||
should_skip = False
|
||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||||
result = decode_with_fallback(segment)[0]
|
||||
tokens = torch.tensor(result.tokens)
|
||||
|
||||
if should_skip:
|
||||
seek += segment.shape[-1] # fast-forward to the next segment boundary
|
||||
continue
|
||||
if no_speech_threshold is not None:
|
||||
# no voice activity check
|
||||
should_skip = result.no_speech_prob > no_speech_threshold
|
||||
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
|
||||
# don't skip if the logprob is high enough, despite the no_speech_prob
|
||||
should_skip = False
|
||||
|
||||
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
||||
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
|
||||
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
|
||||
last_slice = 0
|
||||
for current_slice in consecutive:
|
||||
sliced_tokens = tokens[last_slice:current_slice]
|
||||
start_timestamp_position = (
|
||||
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
end_timestamp_position = (
|
||||
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
||||
if should_skip:
|
||||
seek += segment.shape[-1] # fast-forward to the next segment boundary
|
||||
continue
|
||||
|
||||
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
||||
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
|
||||
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
|
||||
last_slice = 0
|
||||
for current_slice in consecutive:
|
||||
sliced_tokens = tokens[last_slice:current_slice]
|
||||
start_timestamp_position = (
|
||||
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
end_timestamp_position = (
|
||||
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
add_segment(
|
||||
start=timestamp_offset + start_timestamp_position * time_precision,
|
||||
end=timestamp_offset + end_timestamp_position * time_precision,
|
||||
text_tokens=sliced_tokens[1:-1],
|
||||
result=result,
|
||||
)
|
||||
last_slice = current_slice
|
||||
last_timestamp_position = (
|
||||
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
seek += last_timestamp_position * input_stride
|
||||
all_tokens.extend(tokens[: last_slice + 1].tolist())
|
||||
else:
|
||||
duration = segment_duration
|
||||
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
||||
if len(timestamps) > 0:
|
||||
# no consecutive timestamps but it has a timestamp; use the last one.
|
||||
# single timestamp at the end means no speech after the last timestamp.
|
||||
last_timestamp_position = timestamps[-1].item() - tokenizer.timestamp_begin
|
||||
duration = last_timestamp_position * time_precision
|
||||
|
||||
add_segment(
|
||||
start=timestamp_offset + start_timestamp_position * time_precision,
|
||||
end=timestamp_offset + end_timestamp_position * time_precision,
|
||||
text_tokens=sliced_tokens[1:-1],
|
||||
start=timestamp_offset,
|
||||
end=timestamp_offset + duration,
|
||||
text_tokens=tokens,
|
||||
result=result,
|
||||
)
|
||||
last_slice = current_slice
|
||||
last_timestamp_position = (
|
||||
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
seek += last_timestamp_position * input_stride
|
||||
all_tokens.extend(tokens[: last_slice + 1].tolist())
|
||||
else:
|
||||
duration = segment_duration
|
||||
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
||||
if len(timestamps) > 0:
|
||||
# no consecutive timestamps but it has a timestamp; use the last one.
|
||||
# single timestamp at the end means no speech after the last timestamp.
|
||||
last_timestamp_position = timestamps[-1].item() - tokenizer.timestamp_begin
|
||||
duration = last_timestamp_position * time_precision
|
||||
|
||||
add_segment(
|
||||
start=timestamp_offset,
|
||||
end=timestamp_offset + duration,
|
||||
text_tokens=tokens,
|
||||
result=result,
|
||||
)
|
||||
seek += segment.shape[-1]
|
||||
all_tokens.extend(tokens.tolist())
|
||||
|
||||
seek += segment.shape[-1]
|
||||
all_tokens.extend(tokens.tolist())
|
||||
if not condition_on_previous_text or result.temperature > 0.5:
|
||||
# do not feed the prompt tokens if a high temperature was used
|
||||
prompt_reset_since = len(all_tokens)
|
||||
|
||||
if not condition_on_previous_text or result.temperature > 0.5:
|
||||
# do not feed the prompt tokens if a high temperature was used
|
||||
prompt_reset_since = len(all_tokens)
|
||||
# update progress bar
|
||||
pbar.update(min(num_frames, seek) - previous_seek_value)
|
||||
previous_seek_value = seek
|
||||
|
||||
return dict(text=tokenizer.decode(all_tokens), segments=all_segments, language=language)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user