add progress bar for transcribe loop (#100)

* add progress bar to transcribe loop

* improved warning message for English-only models

* add --condition_on_previous_text

* progressbar renames

Co-authored-by: Jong Wook Kim <jongwook@nyu.edu>
This commit is contained in:
fatih 2022-09-26 13:24:13 +03:00 committed by GitHub
parent 5d8d3e75a4
commit 9e7e418ff1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -5,6 +5,7 @@ from typing import List, Optional, Tuple, Union, TYPE_CHECKING
import numpy as np import numpy as np
import torch import torch
import tqdm
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram
from .decoding import DecodingOptions, DecodingResult from .decoding import DecodingOptions, DecodingResult
@ -87,7 +88,7 @@ def transcribe(
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype) segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
_, probs = model.detect_language(segment) _, probs = model.detect_language(segment)
decode_options["language"] = max(probs, key=probs.get) decode_options["language"] = max(probs, key=probs.get)
print(f"Detected language: {LANGUAGES[decode_options['language']]}") print(f"Detected language: {LANGUAGES[decode_options['language']].title()}")
mel = mel.unsqueeze(0) mel = mel.unsqueeze(0)
language = decode_options["language"] language = decode_options["language"]
@ -160,7 +161,12 @@ def transcribe(
if verbose: if verbose:
print(f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}") print(f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}")
while seek < mel.shape[-1]: # show the progress bar when verbose is False (otherwise the transcribed text will be printed)
num_frames = mel.shape[-1]
previous_seek_value = seek
with tqdm.tqdm(total=num_frames, unit='frames', disable=verbose) as pbar:
while seek < num_frames:
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE) timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
segment = pad_or_trim(mel[:, :, seek:], N_FRAMES).to(model.device).to(dtype) segment = pad_or_trim(mel[:, :, seek:], N_FRAMES).to(model.device).to(dtype)
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
@ -227,6 +233,10 @@ def transcribe(
# do not feed the prompt tokens if a high temperature was used # do not feed the prompt tokens if a high temperature was used
prompt_reset_since = len(all_tokens) prompt_reset_since = len(all_tokens)
# update progress bar
pbar.update(min(num_frames, seek) - previous_seek_value)
previous_seek_value = seek
return dict(text=tokenizer.decode(all_tokens), segments=all_segments, language=language) return dict(text=tokenizer.decode(all_tokens), segments=all_segments, language=language)