Merge branch 'main' into main

This commit is contained in:
Kent Slaney 2024-10-02 08:27:39 -07:00 committed by GitHub
commit ad84a5f266
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 100 additions and 30 deletions

View File

@ -41,16 +41,29 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
strategy: strategy:
matrix: matrix:
python-version: ['3.8', '3.9', '3.10', '3.11'] include:
pytorch-version: [1.13.1, 2.0.0] - python-version: '3.8'
exclude:
- python-version: '3.11'
pytorch-version: 1.13.1 pytorch-version: 1.13.1
numpy-requirement: "'numpy<2'"
- python-version: '3.8'
pytorch-version: 2.0.1
numpy-requirement: "'numpy<2'"
- python-version: '3.9'
pytorch-version: 2.1.2
numpy-requirement: "'numpy<2'"
- python-version: '3.10'
pytorch-version: 2.2.2
numpy-requirement: "'numpy<2'"
- python-version: '3.11'
pytorch-version: 2.3.1
numpy-requirement: "'numpy'"
- python-version: '3.12'
pytorch-version: 2.4.1
numpy-requirement: "'numpy'"
steps: steps:
- uses: conda-incubator/setup-miniconda@v2 - uses: conda-incubator/setup-miniconda@v2
- run: conda install -n test ffmpeg python=${{ matrix.python-version }} - run: conda install -n test ffmpeg python=${{ matrix.python-version }}
- run: pip3 install torch==${{ matrix.pytorch-version }}+cpu --index-url https://download.pytorch.org/whl/cpu
- uses: actions/checkout@v3 - uses: actions/checkout@v3
- run: echo "$CONDA/envs/test/bin" >> $GITHUB_PATH - run: echo "$CONDA/envs/test/bin" >> $GITHUB_PATH
- run: pip install .["dev"] - run: pip3 install .["dev"] ${{ matrix.numpy-requirement }} torch==${{ matrix.pytorch-version }}+cpu --index-url https://download.pytorch.org/whl/cpu --extra-index-url https://pypi.org/simple
- run: pytest --durations=0 -vv -k 'not test_transcribe or test_transcribe[tiny] or test_transcribe[tiny.en]' -m 'not requires_cuda' - run: pytest --durations=0 -vv -k 'not test_transcribe or test_transcribe[tiny] or test_transcribe[tiny.en]' -m 'not requires_cuda'

View File

@ -1,5 +1,19 @@
# CHANGELOG # CHANGELOG
## [v20240930](https://github.com/openai/whisper/releases/tag/v20240930)
* allowing numpy 2 in tests ([#2362](https://github.com/openai/whisper/pull/2362))
* large-v3-turbo model ([#2361](https://github.com/openai/whisper/pull/2361))
* test on python/pytorch versions up to 3.12 and 2.4.1 ([#2360](https://github.com/openai/whisper/pull/2360))
* using sdpa if available ([#2359](https://github.com/openai/whisper/pull/2359))
## [v20240927](https://github.com/openai/whisper/releases/tag/v20240927)
* pinning numpy<2 in tests ([#2332](https://github.com/openai/whisper/pull/2332))
* Relax triton requirements for compatibility with pytorch 2.4 and newer ([#2307](https://github.com/openai/whisper/pull/2307))
* Skip silence around hallucinations ([#1838](https://github.com/openai/whisper/pull/1838))
* Fix triton env marker ([#1887](https://github.com/openai/whisper/pull/1887))
## [v20231117](https://github.com/openai/whisper/releases/tag/v20231117) ## [v20231117](https://github.com/openai/whisper/releases/tag/v20231117)
* Relax triton requirements for compatibility with pytorch 2.1 and newer ([#1802](https://github.com/openai/whisper/pull/1802)) * Relax triton requirements for compatibility with pytorch 2.1 and newer ([#1802](https://github.com/openai/whisper/pull/1802))

View File

@ -57,17 +57,21 @@ pip install setuptools-rust
## Available models and languages ## Available models and languages
There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model; actual speed may vary depending on many factors including the available hardware. There are six model sizes, four with English-only versions, offering speed and accuracy tradeoffs.
Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model.
The relative speeds below are measured by transcribing English speech on a A100, and the real-world speed may vary significantly depending on many factors including the language, the speaking speed, and the available hardware.
| Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed | | Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:| |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x | | tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~10x |
| base | 74 M | `base.en` | `base` | ~1 GB | ~16x | | base | 74 M | `base.en` | `base` | ~1 GB | ~7x |
| small | 244 M | `small.en` | `small` | ~2 GB | ~6x | | small | 244 M | `small.en` | `small` | ~2 GB | ~4x |
| medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x | | medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
| large | 1550 M | N/A | `large` | ~10 GB | 1x | | large | 1550 M | N/A | `large` | ~10 GB | 1x |
| turbo | 809 M | N/A | `turbo` | ~6 GB | ~8x |
The `.en` models for English-only applications tend to perform better, especially for the `tiny.en` and `base.en` models. We observed that the difference becomes less significant for the `small.en` and `medium.en` models. The `.en` models for English-only applications tend to perform better, especially for the `tiny.en` and `base.en` models. We observed that the difference becomes less significant for the `small.en` and `medium.en` models.
Additionally, the `turbo` model is an optimized version of `large-v3` that offers faster transcription speed with a minimal degradation in accuracy.
Whisper's performance varies widely depending on the language. The figure below shows a performance breakdown of `large-v3` and `large-v2` models by language, using WERs (word error rates) or CER (character error rates, shown in *Italic*) evaluated on the Common Voice 15 and Fleurs datasets. Additional WER/CER metrics corresponding to the other models and datasets can be found in Appendix D.1, D.2, and D.4 of [the paper](https://arxiv.org/abs/2212.04356), as well as the BLEU (Bilingual Evaluation Understudy) scores for translation in Appendix D.3. Whisper's performance varies widely depending on the language. The figure below shows a performance breakdown of `large-v3` and `large-v2` models by language, using WERs (word error rates) or CER (character error rates, shown in *Italic*) evaluated on the Common Voice 15 and Fleurs datasets. Additional WER/CER metrics corresponding to the other models and datasets can be found in Appendix D.1, D.2, and D.4 of [the paper](https://arxiv.org/abs/2212.04356), as well as the BLEU (Bilingual Evaluation Understudy) scores for translation in Appendix D.3.
@ -77,9 +81,9 @@ Whisper's performance varies widely depending on the language. The figure below
## Command-line usage ## Command-line usage
The following command will transcribe speech in audio files, using the `medium` model: The following command will transcribe speech in audio files, using the `turbo` model:
whisper audio.flac audio.mp3 audio.wav --model medium whisper audio.flac audio.mp3 audio.wav --model turbo
The default setting (which selects the `small` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option: The default setting (which selects the `small` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option:
@ -103,7 +107,7 @@ Transcription can also be performed within Python:
```python ```python
import whisper import whisper
model = whisper.load_model("base") model = whisper.load_model("turbo")
result = model.transcribe("audio.mp3") result = model.transcribe("audio.mp3")
print(result["text"]) print(result["text"])
``` ```
@ -115,7 +119,7 @@ Below is an example usage of `whisper.detect_language()` and `whisper.decode()`
```python ```python
import whisper import whisper
model = whisper.load_model("base") model = whisper.load_model("turbo")
# load audio and pad/trim it to fit 30 seconds # load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3") audio = whisper.load_audio("audio.mp3")

View File

@ -16,13 +16,15 @@ The Whisper models are trained for speech recognition and translation tasks, cap
| small | 244 M | ✓ | ✓ | | small | 244 M | ✓ | ✓ |
| medium | 769 M | ✓ | ✓ | | medium | 769 M | ✓ | ✓ |
| large | 1550 M | | ✓ | | large | 1550 M | | ✓ |
| turbo | 798 M | | ✓ |
In December 2022, we [released an improved large model named `large-v2`](https://github.com/openai/whisper/discussions/661), and `large-v3` in November 2023. In December 2022, we [released an improved large model named `large-v2`](https://github.com/openai/whisper/discussions/661), and `large-v3` in November 2023.
Additionally, we've added a `turbo` model in September 2024 which is optimized for inference speed.
### Release date ### Release date
September 2022 (original series), December 2022 (`large-v2`), and November 2023 (`large-v3`) September 2022 (original series), December 2022 (`large-v2`), November 2023 (`large-v3`), September 2024 (`large-v3-turbo`)
### Model type ### Model type

View File

@ -4,4 +4,4 @@ torch
tqdm tqdm
more-itertools more-itertools
tiktoken tiktoken
triton>=2.0.0,<3;platform_machine=="x86_64" and sys_platform=="linux" or sys_platform=="linux2" triton>=2.0.0;platform_machine=="x86_64" and sys_platform=="linux" or sys_platform=="linux2"

View File

@ -13,7 +13,7 @@ def read_version(fname="whisper/version.py"):
requirements = [] requirements = []
if sys.platform.startswith("linux") and platform.machine() == "x86_64": if sys.platform.startswith("linux") and platform.machine() == "x86_64":
requirements.append("triton>=2.0.0,<3") requirements.append("triton>=2.0.0")
setup( setup(
name="openai-whisper", name="openai-whisper",

View File

@ -27,6 +27,8 @@ _MODELS = {
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt", "large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
"large-v3-turbo": "https://openaipublic.azureedge.net/main/whisper/models/aff26ae408abcba5fbf8813c21e62b0941638c5f6eebfb145be0c9839262a19a/large-v3-turbo.pt",
"turbo": "https://openaipublic.azureedge.net/main/whisper/models/aff26ae408abcba5fbf8813c21e62b0941638c5f6eebfb145be0c9839262a19a/large-v3-turbo.pt",
} }
# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are # base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
@ -44,6 +46,8 @@ _ALIGNMENT_HEADS = {
"large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj", "large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00", "large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00", "large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
"large-v3-turbo": b"ABzY8j^C+e0{>%RARaKHP%t(lGR*)0g!tONPyhe`",
"turbo": b"ABzY8j^C+e0{>%RARaKHP%t(lGR*)0g!tONPyhe`",
} }

View File

@ -1,7 +1,8 @@
import base64 import base64
import gzip import gzip
from contextlib import contextmanager
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, Iterable, Optional from typing import Dict, Iterable, Optional, Tuple
import numpy as np import numpy as np
import torch import torch
@ -12,6 +13,14 @@ from .decoding import decode as decode_function
from .decoding import detect_language as detect_language_function from .decoding import detect_language as detect_language_function
from .transcribe import transcribe as transcribe_function from .transcribe import transcribe as transcribe_function
try:
from torch.nn.functional import scaled_dot_product_attention
SDPA_AVAILABLE = True
except (ImportError, RuntimeError, OSError):
scaled_dot_product_attention = None
SDPA_AVAILABLE = False
@dataclass @dataclass
class ModelDimensions: class ModelDimensions:
@ -59,7 +68,19 @@ def sinusoids(length, channels, max_timescale=10000):
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
@contextmanager
def disable_sdpa():
prev_state = MultiHeadAttention.use_sdpa
try:
MultiHeadAttention.use_sdpa = False
yield
finally:
MultiHeadAttention.use_sdpa = prev_state
class MultiHeadAttention(nn.Module): class MultiHeadAttention(nn.Module):
use_sdpa = True
def __init__(self, n_state: int, n_head: int): def __init__(self, n_state: int, n_head: int):
super().__init__() super().__init__()
self.n_head = n_head self.n_head = n_head
@ -92,20 +113,30 @@ class MultiHeadAttention(nn.Module):
def qkv_attention( def qkv_attention(
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
): ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
n_batch, n_ctx, n_state = q.shape n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25 scale = (n_state // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
qk = q @ k if SDPA_AVAILABLE and MultiHeadAttention.use_sdpa:
if mask is not None: a = scaled_dot_product_attention(
qk = qk + mask[:n_ctx, :n_ctx] q, k, v, is_causal=mask is not None and n_ctx > 1
qk = qk.float() )
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
qk = None
else:
qk = (q * scale) @ (k * scale).transpose(-1, -2)
if mask is not None:
qk = qk + mask[:n_ctx, :n_ctx]
qk = qk.float()
w = F.softmax(qk, dim=-1).to(q.dtype) w = F.softmax(qk, dim=-1).to(q.dtype)
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() out = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
qk = qk.detach()
return out, qk
class ResidualAttentionBlock(nn.Module): class ResidualAttentionBlock(nn.Module):

View File

@ -191,7 +191,9 @@ def find_alignment(
for i, block in enumerate(model.decoder.blocks) for i, block in enumerate(model.decoder.blocks)
] ]
with torch.no_grad(): from .model import disable_sdpa
with torch.no_grad(), disable_sdpa():
logits = model(mel.unsqueeze(0), tokens.unsqueeze(0))[0] logits = model(mel.unsqueeze(0), tokens.unsqueeze(0))[0]
sampled_logits = logits[len(tokenizer.sot_sequence) :, : tokenizer.eot] sampled_logits = logits[len(tokenizer.sot_sequence) :, : tokenizer.eot]
token_probs = sampled_logits.softmax(dim=-1) token_probs = sampled_logits.softmax(dim=-1)

View File

@ -874,7 +874,7 @@ def cli():
# fmt: off # fmt: off
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe") parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
parser.add_argument("--model", default="small", type=valid_model_name, help="name of the Whisper model to use") parser.add_argument("--model", default="turbo", type=valid_model_name, help="name of the Whisper model to use")
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default") parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference") parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs") parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")

View File

@ -1 +1 @@
__version__ = "20231117" __version__ = "20240930"