mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 06:26:03 +00:00
Merge 022b7aae8f0b91660ab5af4bd01ca39d12ccaaba into 173ff7dd1d9fb1c4fddea0d41d704cfefeb8908c
This commit is contained in:
commit
c7d891e9bd
@ -24,24 +24,20 @@ TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audi
|
||||
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
"""
|
||||
Open an audio file and read as mono waveform, resampling as necessary
|
||||
Open an audio file and read as mono waveform, resampling as necessary.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file: str
|
||||
The audio file to open
|
||||
The audio file to open.
|
||||
|
||||
sr: int
|
||||
The sample rate to resample the audio if necessary
|
||||
The sample rate to resample the audio if necessary.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A NumPy array containing the audio waveform, in float32 dtype.
|
||||
"""
|
||||
|
||||
# This launches a subprocess to decode audio while down-mixing
|
||||
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||||
# fmt: off
|
||||
cmd = [
|
||||
"ffmpeg",
|
||||
"-nostdin",
|
||||
@ -53,7 +49,6 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
"-ar", str(sr),
|
||||
"-"
|
||||
]
|
||||
# fmt: on
|
||||
try:
|
||||
out = run(cmd, capture_output=True, check=True).stdout
|
||||
except CalledProcessError as e:
|
||||
@ -65,6 +60,21 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
"""
|
||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
array: Union[np.ndarray, torch.Tensor]
|
||||
The audio array to pad or trim.
|
||||
|
||||
length: int
|
||||
The desired length of the audio array.
|
||||
|
||||
axis: int
|
||||
The axis along which to pad or trim.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A padded or trimmed array.
|
||||
"""
|
||||
if torch.is_tensor(array):
|
||||
if array.shape[axis] > length:
|
||||
@ -91,14 +101,20 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
@lru_cache(maxsize=None)
|
||||
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
||||
"""
|
||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
Allows decoupling librosa dependency; saved using:
|
||||
Load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
|
||||
np.savez_compressed(
|
||||
"mel_filters.npz",
|
||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||||
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
|
||||
)
|
||||
Parameters
|
||||
----------
|
||||
device: torch.device
|
||||
The device to load the filters on.
|
||||
|
||||
n_mels: int
|
||||
The number of Mel-frequency filters.
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor
|
||||
The Mel filterbank matrix.
|
||||
"""
|
||||
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
||||
|
||||
@ -114,27 +130,28 @@ def log_mel_spectrogram(
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
):
|
||||
"""
|
||||
Compute the log-Mel spectrogram of
|
||||
Compute the log-Mel spectrogram of the audio.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||||
audio: Union[str, np.ndarray, torch.Tensor]
|
||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz.
|
||||
|
||||
n_mels: int
|
||||
The number of Mel-frequency filters, only 80 is supported
|
||||
The number of Mel-frequency filters.
|
||||
|
||||
padding: int
|
||||
Number of zero samples to pad to the right
|
||||
Number of zero samples to pad to the right.
|
||||
|
||||
device: Optional[Union[str, torch.device]]
|
||||
If given, the audio tensor is moved to this device before STFT
|
||||
If given, the audio tensor is moved to this device before STFT.
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor, shape = (80, n_frames)
|
||||
A Tensor that contains the Mel spectrogram
|
||||
torch.Tensor
|
||||
A Tensor that contains the Mel spectrogram.
|
||||
"""
|
||||
try:
|
||||
if not torch.is_tensor(audio):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
@ -155,3 +172,6 @@ def log_mel_spectrogram(
|
||||
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||
log_spec = (log_spec + 4.0) / 4.0
|
||||
return log_spec
|
||||
except Exception as e:
|
||||
print(f"Error computing log-mel spectrogram: {e}")
|
||||
return None
|
||||
|
||||
@ -125,6 +125,7 @@ class DecodingResult:
|
||||
no_speech_prob: float = np.nan
|
||||
temperature: float = np.nan
|
||||
compression_ratio: float = np.nan
|
||||
tokens_probs: list[float] = field(default_factory=list)
|
||||
|
||||
|
||||
class Inference:
|
||||
@ -218,8 +219,8 @@ class TokenDecoder:
|
||||
"""Initialize any stateful variables for decoding a new sequence"""
|
||||
|
||||
def update(
|
||||
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor
|
||||
) -> Tuple[Tensor, bool]:
|
||||
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor, tokens_probs: list[list[float]]
|
||||
) -> Tuple[Tensor, list, bool]:
|
||||
"""Specify how to select the next token, based on the current trace and logits
|
||||
|
||||
Parameters
|
||||
@ -275,8 +276,8 @@ class GreedyDecoder(TokenDecoder):
|
||||
self.eot = eot
|
||||
|
||||
def update(
|
||||
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor
|
||||
) -> Tuple[Tensor, bool]:
|
||||
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor, tokens_probs: list
|
||||
) -> Tuple[Tensor, list, bool]:
|
||||
if self.temperature == 0:
|
||||
next_tokens = logits.argmax(dim=-1)
|
||||
else:
|
||||
@ -284,18 +285,25 @@ class GreedyDecoder(TokenDecoder):
|
||||
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens]
|
||||
current_probs = torch.exp(current_logprobs)
|
||||
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot)
|
||||
|
||||
tokens_probs = [t_p + [c_p.item()] for t_p, c_p in zip(tokens_probs, current_probs)]
|
||||
next_tokens[tokens[:, -1] == self.eot] = self.eot
|
||||
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
|
||||
|
||||
completed = (tokens[:, -1] == self.eot).all()
|
||||
return tokens, completed
|
||||
|
||||
def finalize(self, tokens: Tensor, sum_logprobs: Tensor):
|
||||
# make sure each sequence has at least one EOT token at the end
|
||||
return tokens, tokens_probs, completed
|
||||
|
||||
def finalize(
|
||||
self, tokens: Tensor, tokens_probs: list, sum_logprobs: Tensor
|
||||
) -> Tuple[Tensor, list, list]:
|
||||
tokens = F.pad(tokens, (0, 1), value=self.eot)
|
||||
return tokens, sum_logprobs.tolist()
|
||||
tokens_probs = [[ t + [1.0] for t in s] for s in tokens_probs]
|
||||
return tokens, tokens_probs, sum_logprobs.tolist()
|
||||
|
||||
|
||||
|
||||
|
||||
class BeamSearchDecoder(TokenDecoder):
|
||||
@ -321,37 +329,39 @@ class BeamSearchDecoder(TokenDecoder):
|
||||
self.finished_sequences = None
|
||||
|
||||
def update(
|
||||
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor
|
||||
) -> Tuple[Tensor, bool]:
|
||||
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor, tokens_probs: list
|
||||
) -> Tuple[Tensor, list, bool]:
|
||||
if tokens.shape[0] % self.beam_size != 0:
|
||||
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
|
||||
|
||||
n_audio = tokens.shape[0] // self.beam_size
|
||||
if self.finished_sequences is None: # for the first update
|
||||
if self.finished_sequences is None:
|
||||
self.finished_sequences = [{} for _ in range(n_audio)]
|
||||
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
next_tokens, source_indices, finished_sequences = [], [], []
|
||||
for i in range(n_audio):
|
||||
scores, sources, finished = {}, {}, {}
|
||||
scores, sources, finished, probs = {}, {}, {}, {}
|
||||
|
||||
# STEP 1: calculate the cumulative log probabilities for possible candidates
|
||||
for j in range(self.beam_size):
|
||||
idx = i * self.beam_size + j
|
||||
prefix = tokens[idx].tolist()
|
||||
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)):
|
||||
prob = torch.exp(logprob).item()
|
||||
new_logprob = (sum_logprobs[idx] + logprob).item()
|
||||
sequence = tuple(prefix + [token.item()])
|
||||
scores[sequence] = new_logprob
|
||||
sources[sequence] = idx
|
||||
|
||||
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio
|
||||
probs[sequence] = tokens_probs[idx] + [prob]
|
||||
|
||||
saved = 0
|
||||
for sequence in sorted(scores, key=scores.get, reverse=True):
|
||||
if sequence[-1] == self.eot:
|
||||
finished[sequence] = scores[sequence]
|
||||
finished[sequence] = (scores[sequence], probs[sequence])
|
||||
else:
|
||||
sum_logprobs[len(next_tokens)] = scores[sequence]
|
||||
tokens_probs[len(next_tokens)] = probs[sequence]
|
||||
next_tokens.append(sequence)
|
||||
source_indices.append(sources[sequence])
|
||||
|
||||
@ -364,44 +374,42 @@ class BeamSearchDecoder(TokenDecoder):
|
||||
tokens = torch.tensor(next_tokens, device=tokens.device)
|
||||
self.inference.rearrange_kv_cache(source_indices)
|
||||
|
||||
# add newly finished sequences to self.finished_sequences
|
||||
assert len(self.finished_sequences) == len(finished_sequences)
|
||||
for previously_finished, newly_finished in zip(
|
||||
self.finished_sequences, finished_sequences
|
||||
):
|
||||
for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences):
|
||||
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
|
||||
if len(previously_finished) >= self.max_candidates:
|
||||
break # the candidate list is full
|
||||
break
|
||||
previously_finished[seq] = newly_finished[seq]
|
||||
|
||||
# mark as completed if all audio has enough number of samples
|
||||
completed = all(
|
||||
len(sequences) >= self.max_candidates
|
||||
for sequences in self.finished_sequences
|
||||
len(sequences) >= self.max_candidates for sequences in self.finished_sequences
|
||||
)
|
||||
return tokens, completed
|
||||
|
||||
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor):
|
||||
# collect all finished sequences, including patience, and add unfinished ones if not enough
|
||||
return tokens, tokens_probs, completed
|
||||
|
||||
def finalize(
|
||||
self, preceding_tokens: Tensor, preceding_tokens_prob: list, sum_logprobs: Tensor
|
||||
) -> Tuple[list, list, list]:
|
||||
sum_logprobs = sum_logprobs.cpu()
|
||||
for i, sequences in enumerate(self.finished_sequences):
|
||||
if (
|
||||
len(sequences) < self.beam_size
|
||||
): # when not enough sequences are finished
|
||||
if len(sequences) < self.beam_size:
|
||||
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
|
||||
sequence = preceding_tokens[i, j].tolist() + [self.eot]
|
||||
sequences[tuple(sequence)] = sum_logprobs[i][j].item()
|
||||
sequences[tuple(sequence)] = (sum_logprobs[i][j].item(), preceding_tokens_prob[i][j] + [1.0])
|
||||
if len(sequences) >= self.beam_size:
|
||||
break
|
||||
|
||||
tokens: List[List[Tensor]] = [
|
||||
[torch.tensor(seq) for seq in sequences.keys()]
|
||||
for sequences in self.finished_sequences
|
||||
[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences
|
||||
]
|
||||
sum_logprobs: List[List[float]] = [
|
||||
list(sequences.values()) for sequences in self.finished_sequences
|
||||
[v[0] for v in sequences.values()] for sequences in self.finished_sequences
|
||||
]
|
||||
return tokens, sum_logprobs
|
||||
tokens_probs: list[list[list[float]]] = [
|
||||
[v[1] for v in sequences.values()] for sequences in self.finished_sequences
|
||||
]
|
||||
|
||||
return tokens, tokens_probs, sum_logprobs
|
||||
|
||||
|
||||
class LogitFilter:
|
||||
@ -700,7 +708,8 @@ class DecodingTask:
|
||||
logit_filter.apply(logits, tokens)
|
||||
|
||||
# expand the tokens tensor with the selected next tokens
|
||||
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
|
||||
tokens, tokens_probs, completed = self.decoder.update(tokens, logits, sum_logprobs, tokens_probs)
|
||||
|
||||
|
||||
if completed or tokens.shape[-1] > self.n_ctx:
|
||||
break
|
||||
@ -734,7 +743,7 @@ class DecodingTask:
|
||||
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
||||
|
||||
# call the main sampling loop
|
||||
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
||||
tokens, sum_logprobs, no_speech_probs, tokens_probs = self._main_loop(audio_features, tokens)
|
||||
|
||||
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
||||
audio_features = audio_features[:: self.n_group]
|
||||
@ -747,8 +756,10 @@ class DecodingTask:
|
||||
# get the final candidates for each group, and slice between the first sampled token and EOT
|
||||
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
||||
tokens: List[List[Tensor]] = [
|
||||
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s]
|
||||
for s in tokens
|
||||
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
|
||||
]
|
||||
tokens_probs: list[list[list[float]]] = [
|
||||
[probs[:tokens.shape[0]]for probs, tokens in zip(s, t)] for s, t in zip(tokens_probs, tokens)
|
||||
]
|
||||
|
||||
# select the top-ranked sample in each group
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user