mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 06:26:03 +00:00
Add option to carry initial_prompt with the sliding window
Add an option `carry_initial_prompt = False` to `whisper.transcribe()`. When set to `True`, `initial_prompt` is prepended to each internal `decode()` call's `prompt`. If there is not enough context space at the start of the prompt, the prompt is left-sliced to make space.
This commit is contained in:
parent
32d55d5d76
commit
ce140e4f7a
@ -46,6 +46,7 @@ def transcribe(
|
||||
no_speech_threshold: Optional[float] = 0.6,
|
||||
condition_on_previous_text: bool = True,
|
||||
initial_prompt: Optional[str] = None,
|
||||
carry_initial_prompt: bool = False,
|
||||
word_timestamps: bool = False,
|
||||
prepend_punctuations: str = "\"'“¿([{-",
|
||||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
||||
@ -102,6 +103,11 @@ def transcribe(
|
||||
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
||||
to make it more likely to predict those word correctly.
|
||||
|
||||
carry_initial_prompt: bool
|
||||
If carry_initial_prompt is True, `initial_prompt` is prepended to the prompt of each internal
|
||||
`decode()` call. If there is not enough context space at the start of the prompt, it is
|
||||
left-sliced to make space.
|
||||
|
||||
decode_options: dict
|
||||
Keyword arguments to construct `DecodingOptions` instances
|
||||
|
||||
@ -227,9 +233,11 @@ def transcribe(
|
||||
all_segments = []
|
||||
prompt_reset_since = 0
|
||||
|
||||
remaining_prompt_length = model.dims.n_text_ctx // 2 - 1
|
||||
if initial_prompt is not None:
|
||||
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
|
||||
all_tokens.extend(initial_prompt_tokens)
|
||||
remaining_prompt_length -= len(initial_prompt_tokens)
|
||||
else:
|
||||
initial_prompt_tokens = []
|
||||
|
||||
@ -275,7 +283,13 @@ def transcribe(
|
||||
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
|
||||
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
|
||||
|
||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||||
prompt_reseed = all_tokens[prompt_reset_since:]
|
||||
if carry_initial_prompt:
|
||||
prompt_reseed = (
|
||||
initial_prompt_tokens + prompt_reseed[-remaining_prompt_length:]
|
||||
)
|
||||
decode_options["prompt"] = prompt_reseed
|
||||
|
||||
result: DecodingResult = decode_with_fallback(mel_segment)
|
||||
tokens = torch.tensor(result.tokens)
|
||||
|
||||
@ -529,6 +543,8 @@ def cli():
|
||||
|
||||
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
||||
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
||||
parser.add_argument("--carry_initial_prompt", type=str2bool, default=False, help="if True, prepend initial_prompt to every internal decode() call. May reduce the effectiveness of condition_on_previous_text")
|
||||
|
||||
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
||||
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user