General improvements

This commit is contained in:
beaskoczy 2024-12-22 12:58:06 +01:00
parent 90db0de189
commit d5636d387d

View File

@ -5,19 +5,19 @@
[[Model card]](https://github.com/openai/whisper/blob/main/model-card.md)
[[Colab example]](https://colab.research.google.com/github/openai/whisper/blob/master/notebooks/LibriSpeech.ipynb)
Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification.
Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio. It is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification.
## Approach
![Approach](https://raw.githubusercontent.com/openai/whisper/main/approach.png)
A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. These tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. These tasks are represented together as a sequence of tokens to be predicted by the decoder. This allows a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
## Setup
We used Python 3.9.9 and [PyTorch](https://pytorch.org/) 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.8-3.11 and recent PyTorch versions. The codebase also depends on a few Python packages, most notably [OpenAI's tiktoken](https://github.com/openai/tiktoken) for their fast tokenizer implementation. You can download and install (or update to) the latest release of Whisper with the following command:
We used Python 3.9.9 and [PyTorch](https://pytorch.org/) 1.10.1 to train and test our models. The codebase should also be compatible with Python 3.8-3.11 and recent PyTorch versions. The codebase also depends on a few Python packages, most notably [OpenAI's tiktoken](https://github.com/openai/tiktoken) for their fast tokenizer implementation. You can download and install (or update to) the latest release of Whisper with the following command:
pip install -U openai-whisper
@ -59,7 +59,7 @@ pip install setuptools-rust
There are six model sizes, four with English-only versions, offering speed and accuracy tradeoffs.
Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model.
The relative speeds below are measured by transcribing English speech on a A100, and the real-world speed may vary significantly depending on many factors including the language, the speaking speed, and the available hardware.
The relative speeds below are measured by transcribing English speech on a A100. The real-world speed may vary significantly depending on many factors including the language, the speaking speed, and the available hardware.
| Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
@ -142,7 +142,7 @@ print(result.text)
## More examples
Please use the [🙌 Show and tell](https://github.com/openai/whisper/discussions/categories/show-and-tell) category in Discussions for sharing more example usages of Whisper and third-party extensions such as web demos, integrations with other tools, ports for different platforms, etc.
Use the [🙌 Show and tell](https://github.com/openai/whisper/discussions/categories/show-and-tell) category in Discussions for sharing more example usages of Whisper and third-party extensions such as web demos, integrations with other tools, ports for different platforms, etc.
## License