mirror of
https://github.com/openai/whisper.git
synced 2025-03-30 14:28:27 +00:00
Merge branch 'main' into support_negative_timestamps
This commit is contained in:
commit
e8ea46f6b4
2
.github/workflows/python-publish.yml
vendored
2
.github/workflows/python-publish.yml
vendored
@ -33,5 +33,5 @@ jobs:
|
||||
TWINE_USERNAME: __token__
|
||||
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
|
||||
run: |
|
||||
python setup.py sdist
|
||||
python -m build --sdist
|
||||
twine upload dist/*
|
||||
|
45
.github/workflows/test.yml
vendored
45
.github/workflows/test.yml
vendored
@ -11,19 +11,19 @@ jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Fetch base branch
|
||||
run: git fetch origin ${{ github.base_ref }}
|
||||
- uses: actions/setup-python@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.8"
|
||||
python-version: "3.9"
|
||||
architecture: x64
|
||||
- name: Get pip cache dir
|
||||
id: pip-cache
|
||||
run: |
|
||||
echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
|
||||
- name: pip/pre-commit cache
|
||||
uses: actions/cache@v3
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
${{ steps.pip-cache.outputs.dir }}
|
||||
@ -33,7 +33,7 @@ jobs:
|
||||
${{ runner.os }}-pip-pre-commit
|
||||
- name: pre-commit
|
||||
run: |
|
||||
pip install -U pre-commit
|
||||
pip install --upgrade pre-commit
|
||||
pre-commit install --install-hooks
|
||||
pre-commit run --all-files
|
||||
whisper-test:
|
||||
@ -41,16 +41,35 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ['3.8', '3.9', '3.10', '3.11']
|
||||
pytorch-version: [1.13.1, 2.0.0]
|
||||
exclude:
|
||||
- python-version: '3.11'
|
||||
include:
|
||||
- python-version: '3.8'
|
||||
pytorch-version: 1.10.1
|
||||
numpy-requirement: "'numpy<2'"
|
||||
- python-version: '3.8'
|
||||
pytorch-version: 1.13.1
|
||||
numpy-requirement: "'numpy<2'"
|
||||
- python-version: '3.8'
|
||||
pytorch-version: 2.0.1
|
||||
numpy-requirement: "'numpy<2'"
|
||||
- python-version: '3.9'
|
||||
pytorch-version: 2.1.2
|
||||
numpy-requirement: "'numpy<2'"
|
||||
- python-version: '3.10'
|
||||
pytorch-version: 2.2.2
|
||||
numpy-requirement: "'numpy<2'"
|
||||
- python-version: '3.11'
|
||||
pytorch-version: 2.3.1
|
||||
numpy-requirement: "'numpy'"
|
||||
- python-version: '3.12'
|
||||
pytorch-version: 2.4.1
|
||||
numpy-requirement: "'numpy'"
|
||||
- python-version: '3.12'
|
||||
pytorch-version: 2.5.0
|
||||
numpy-requirement: "'numpy'"
|
||||
steps:
|
||||
- uses: conda-incubator/setup-miniconda@v2
|
||||
- uses: conda-incubator/setup-miniconda@v3
|
||||
- run: conda install -n test ffmpeg python=${{ matrix.python-version }}
|
||||
- run: pip3 install torch==${{ matrix.pytorch-version }}+cpu --index-url https://download.pytorch.org/whl/cpu
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- run: echo "$CONDA/envs/test/bin" >> $GITHUB_PATH
|
||||
- run: pip install .["dev"]
|
||||
- run: pip3 install .["dev"] ${{ matrix.numpy-requirement }} torch==${{ matrix.pytorch-version }}+cpu --index-url https://download.pytorch.org/whl/cpu --extra-index-url https://pypi.org/simple
|
||||
- run: pytest --durations=0 -vv -k 'not test_transcribe or test_transcribe[tiny] or test_transcribe[tiny.en]' -m 'not requires_cuda'
|
||||
|
@ -1,6 +1,6 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
rev: v5.0.0
|
||||
hooks:
|
||||
- id: check-json
|
||||
- id: end-of-file-fixer
|
||||
@ -11,17 +11,17 @@ repos:
|
||||
- id: check-added-large-files
|
||||
args: [--maxkb=4096]
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.7.0
|
||||
rev: 24.10.0
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.12.0
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
name: isort (python)
|
||||
args: ["--profile", "black", "-l", "88", "--trailing-comma", "--multi-line", "3"]
|
||||
- repo: https://github.com/pycqa/flake8.git
|
||||
rev: 6.0.0
|
||||
rev: 7.1.1
|
||||
hooks:
|
||||
- id: flake8
|
||||
types: [python]
|
||||
|
14
CHANGELOG.md
14
CHANGELOG.md
@ -1,5 +1,19 @@
|
||||
# CHANGELOG
|
||||
|
||||
## [v20240930](https://github.com/openai/whisper/releases/tag/v20240930)
|
||||
|
||||
* allowing numpy 2 in tests ([#2362](https://github.com/openai/whisper/pull/2362))
|
||||
* large-v3-turbo model ([#2361](https://github.com/openai/whisper/pull/2361))
|
||||
* test on python/pytorch versions up to 3.12 and 2.4.1 ([#2360](https://github.com/openai/whisper/pull/2360))
|
||||
* using sdpa if available ([#2359](https://github.com/openai/whisper/pull/2359))
|
||||
|
||||
## [v20240927](https://github.com/openai/whisper/releases/tag/v20240927)
|
||||
|
||||
* pinning numpy<2 in tests ([#2332](https://github.com/openai/whisper/pull/2332))
|
||||
* Relax triton requirements for compatibility with pytorch 2.4 and newer ([#2307](https://github.com/openai/whisper/pull/2307))
|
||||
* Skip silence around hallucinations ([#1838](https://github.com/openai/whisper/pull/1838))
|
||||
* Fix triton env marker ([#1887](https://github.com/openai/whisper/pull/1887))
|
||||
|
||||
## [v20231117](https://github.com/openai/whisper/releases/tag/v20231117)
|
||||
|
||||
* Relax triton requirements for compatibility with pytorch 2.1 and newer ([#1802](https://github.com/openai/whisper/pull/1802))
|
||||
|
24
README.md
24
README.md
@ -57,17 +57,21 @@ pip install setuptools-rust
|
||||
|
||||
## Available models and languages
|
||||
|
||||
There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model; actual speed may vary depending on many factors including the available hardware.
|
||||
There are six model sizes, four with English-only versions, offering speed and accuracy tradeoffs.
|
||||
Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model.
|
||||
The relative speeds below are measured by transcribing English speech on a A100, and the real-world speed may vary significantly depending on many factors including the language, the speaking speed, and the available hardware.
|
||||
|
||||
| Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|
||||
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
|
||||
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
|
||||
| base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
|
||||
| small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
|
||||
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~10x |
|
||||
| base | 74 M | `base.en` | `base` | ~1 GB | ~7x |
|
||||
| small | 244 M | `small.en` | `small` | ~2 GB | ~4x |
|
||||
| medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
|
||||
| large | 1550 M | N/A | `large` | ~10 GB | 1x |
|
||||
| turbo | 809 M | N/A | `turbo` | ~6 GB | ~8x |
|
||||
|
||||
The `.en` models for English-only applications tend to perform better, especially for the `tiny.en` and `base.en` models. We observed that the difference becomes less significant for the `small.en` and `medium.en` models.
|
||||
Additionally, the `turbo` model is an optimized version of `large-v3` that offers faster transcription speed with a minimal degradation in accuracy.
|
||||
|
||||
Whisper's performance varies widely depending on the language. The figure below shows a performance breakdown of `large-v3` and `large-v2` models by language, using WERs (word error rates) or CER (character error rates, shown in *Italic*) evaluated on the Common Voice 15 and Fleurs datasets. Additional WER/CER metrics corresponding to the other models and datasets can be found in Appendix D.1, D.2, and D.4 of [the paper](https://arxiv.org/abs/2212.04356), as well as the BLEU (Bilingual Evaluation Understudy) scores for translation in Appendix D.3.
|
||||
|
||||
@ -77,11 +81,11 @@ Whisper's performance varies widely depending on the language. The figure below
|
||||
|
||||
## Command-line usage
|
||||
|
||||
The following command will transcribe speech in audio files, using the `medium` model:
|
||||
The following command will transcribe speech in audio files, using the `turbo` model:
|
||||
|
||||
whisper audio.flac audio.mp3 audio.wav --model medium
|
||||
whisper audio.flac audio.mp3 audio.wav --model turbo
|
||||
|
||||
The default setting (which selects the `small` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option:
|
||||
The default setting (which selects the `turbo` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option:
|
||||
|
||||
whisper japanese.wav --language Japanese
|
||||
|
||||
@ -103,7 +107,7 @@ Transcription can also be performed within Python:
|
||||
```python
|
||||
import whisper
|
||||
|
||||
model = whisper.load_model("base")
|
||||
model = whisper.load_model("turbo")
|
||||
result = model.transcribe("audio.mp3")
|
||||
print(result["text"])
|
||||
```
|
||||
@ -115,14 +119,14 @@ Below is an example usage of `whisper.detect_language()` and `whisper.decode()`
|
||||
```python
|
||||
import whisper
|
||||
|
||||
model = whisper.load_model("base")
|
||||
model = whisper.load_model("turbo")
|
||||
|
||||
# load audio and pad/trim it to fit 30 seconds
|
||||
audio = whisper.load_audio("audio.mp3")
|
||||
audio = whisper.pad_or_trim(audio)
|
||||
|
||||
# make log-Mel spectrogram and move to the same device as the model
|
||||
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
||||
mel = whisper.log_mel_spectrogram(audio, n_mels=model.dims.n_mels).to(model.device)
|
||||
|
||||
# detect the spoken language
|
||||
_, probs = model.detect_language(mel)
|
||||
|
@ -45,7 +45,7 @@ We downloaded the [CHiME-5 dataset](https://spandh.dcs.shef.ac.uk//chime_challen
|
||||
|
||||
### AMI-IHM, AMI-SDM1
|
||||
|
||||
We preprocessed the [AMI Corpus](https://groups.inf.ed.ac.uk/ami/corpus/overview.shtml) by following the stage 0 ad 2 of the [s5b recipe](https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5b).
|
||||
We preprocessed the [AMI Corpus](https://groups.inf.ed.ac.uk/ami/corpus/overview.shtml) by following the stage 0 and 2 of the [s5b recipe](https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5b).
|
||||
|
||||
|
||||
## Long-form English-only datasets
|
||||
|
@ -16,13 +16,15 @@ The Whisper models are trained for speech recognition and translation tasks, cap
|
||||
| small | 244 M | ✓ | ✓ |
|
||||
| medium | 769 M | ✓ | ✓ |
|
||||
| large | 1550 M | | ✓ |
|
||||
| turbo | 798 M | | ✓ |
|
||||
|
||||
In December 2022, we [released an improved large model named `large-v2`](https://github.com/openai/whisper/discussions/661), and `large-v3` in November 2023.
|
||||
Additionally, we've added a `turbo` model in September 2024 which is optimized for inference speed.
|
||||
|
||||
|
||||
### Release date
|
||||
|
||||
September 2022 (original series), December 2022 (`large-v2`), and November 2023 (`large-v3`)
|
||||
September 2022 (original series), December 2022 (`large-v2`), November 2023 (`large-v3`), September 2024 (`large-v3-turbo`)
|
||||
|
||||
### Model type
|
||||
|
||||
|
@ -1,3 +1,50 @@
|
||||
[build-system]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
requires = [ "setuptools>=61.2" ]
|
||||
|
||||
[project]
|
||||
name = "openai-whisper"
|
||||
description = "Robust Speech Recognition via Large-Scale Weak Supervision"
|
||||
readme.content-type = "text/markdown"
|
||||
readme.file = "README.md"
|
||||
license = { text = "MIT" }
|
||||
authors = [ { name = "OpenAI" } ]
|
||||
requires-python = ">=3.8"
|
||||
classifiers = [
|
||||
"Programming Language :: Python :: 3 :: Only",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Programming Language :: Python :: 3.12",
|
||||
"Programming Language :: Python :: 3.13",
|
||||
]
|
||||
dynamic = [ "version" ]
|
||||
dependencies = [
|
||||
"more-itertools",
|
||||
"numba",
|
||||
"numpy",
|
||||
"tiktoken",
|
||||
"torch",
|
||||
"tqdm",
|
||||
"triton>=2; (platform_machine=='x86_64' and sys_platform=='linux') or sys_platform=='linux2'",
|
||||
]
|
||||
optional-dependencies.dev = [ "black", "flake8", "isort", "pytest", "scipy" ]
|
||||
urls = { Homepage = "https://github.com/openai/whisper" }
|
||||
scripts.whisper = "whisper.transcribe:cli"
|
||||
|
||||
[tool.setuptools]
|
||||
py-modules = [ "whisper" ]
|
||||
include-package-data = true
|
||||
|
||||
[tool.setuptools.dynamic]
|
||||
version = { attr = "whisper.version.__version__" }
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
exclude = [ "tests*" ]
|
||||
namespaces = false
|
||||
|
||||
[tool.black]
|
||||
|
||||
[tool.isort]
|
||||
@ -5,4 +52,3 @@ profile = "black"
|
||||
include_trailing_comma = true
|
||||
line_length = 88
|
||||
multi_line_output = 3
|
||||
|
||||
|
@ -4,4 +4,4 @@ torch
|
||||
tqdm
|
||||
more-itertools
|
||||
tiktoken
|
||||
triton>=2.0.0,<3;platform_machine=="x86_64" and sys_platform=="linux" or sys_platform=="linux2"
|
||||
triton>=2.0.0;platform_machine=="x86_64" and sys_platform=="linux" or sys_platform=="linux2"
|
||||
|
42
setup.py
42
setup.py
@ -1,42 +0,0 @@
|
||||
import platform
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
|
||||
def read_version(fname="whisper/version.py"):
|
||||
exec(compile(open(fname, encoding="utf-8").read(), fname, "exec"))
|
||||
return locals()["__version__"]
|
||||
|
||||
|
||||
requirements = []
|
||||
if sys.platform.startswith("linux") and platform.machine() == "x86_64":
|
||||
requirements.append("triton>=2.0.0,<3")
|
||||
|
||||
setup(
|
||||
name="openai-whisper",
|
||||
py_modules=["whisper"],
|
||||
version=read_version(),
|
||||
description="Robust Speech Recognition via Large-Scale Weak Supervision",
|
||||
long_description=open("README.md", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
readme="README.md",
|
||||
python_requires=">=3.8",
|
||||
author="OpenAI",
|
||||
url="https://github.com/openai/whisper",
|
||||
license="MIT",
|
||||
packages=find_packages(exclude=["tests*"]),
|
||||
install_requires=[
|
||||
str(r)
|
||||
for r in pkg_resources.parse_requirements(
|
||||
Path(__file__).with_name("requirements.txt").open()
|
||||
)
|
||||
],
|
||||
entry_points={
|
||||
"console_scripts": ["whisper=whisper.transcribe:cli"],
|
||||
},
|
||||
include_package_data=True,
|
||||
extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]},
|
||||
)
|
@ -27,6 +27,8 @@ _MODELS = {
|
||||
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
|
||||
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
|
||||
"large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
|
||||
"large-v3-turbo": "https://openaipublic.azureedge.net/main/whisper/models/aff26ae408abcba5fbf8813c21e62b0941638c5f6eebfb145be0c9839262a19a/large-v3-turbo.pt",
|
||||
"turbo": "https://openaipublic.azureedge.net/main/whisper/models/aff26ae408abcba5fbf8813c21e62b0941638c5f6eebfb145be0c9839262a19a/large-v3-turbo.pt",
|
||||
}
|
||||
|
||||
# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
|
||||
@ -44,6 +46,8 @@ _ALIGNMENT_HEADS = {
|
||||
"large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
|
||||
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
|
||||
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
|
||||
"large-v3-turbo": b"ABzY8j^C+e0{>%RARaKHP%t(lGR*)0g!tONPyhe`",
|
||||
"turbo": b"ABzY8j^C+e0{>%RARaKHP%t(lGR*)0g!tONPyhe`",
|
||||
}
|
||||
|
||||
|
||||
|
@ -122,7 +122,7 @@ def log_mel_spectrogram(
|
||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||||
|
||||
n_mels: int
|
||||
The number of Mel-frequency filters, only 80 is supported
|
||||
The number of Mel-frequency filters, only 80 and 128 are supported
|
||||
|
||||
padding: int
|
||||
Number of zero samples to pad to the right
|
||||
@ -132,7 +132,7 @@ def log_mel_spectrogram(
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor, shape = (80, n_frames)
|
||||
torch.Tensor, shape = (n_mels, n_frames)
|
||||
A Tensor that contains the Mel spectrogram
|
||||
"""
|
||||
if not torch.is_tensor(audio):
|
||||
|
@ -1,7 +1,8 @@
|
||||
import base64
|
||||
import gzip
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Iterable, Optional
|
||||
from typing import Dict, Iterable, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -12,6 +13,14 @@ from .decoding import decode as decode_function
|
||||
from .decoding import detect_language as detect_language_function
|
||||
from .transcribe import transcribe as transcribe_function
|
||||
|
||||
try:
|
||||
from torch.nn.functional import scaled_dot_product_attention
|
||||
|
||||
SDPA_AVAILABLE = True
|
||||
except (ImportError, RuntimeError, OSError):
|
||||
scaled_dot_product_attention = None
|
||||
SDPA_AVAILABLE = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelDimensions:
|
||||
@ -59,7 +68,19 @@ def sinusoids(length, channels, max_timescale=10000):
|
||||
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def disable_sdpa():
|
||||
prev_state = MultiHeadAttention.use_sdpa
|
||||
try:
|
||||
MultiHeadAttention.use_sdpa = False
|
||||
yield
|
||||
finally:
|
||||
MultiHeadAttention.use_sdpa = prev_state
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
use_sdpa = True
|
||||
|
||||
def __init__(self, n_state: int, n_head: int):
|
||||
super().__init__()
|
||||
self.n_head = n_head
|
||||
@ -92,20 +113,30 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
def qkv_attention(
|
||||
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
|
||||
):
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
n_batch, n_ctx, n_state = q.shape
|
||||
scale = (n_state // self.n_head) ** -0.25
|
||||
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
|
||||
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
|
||||
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
||||
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
||||
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
||||
|
||||
qk = q @ k
|
||||
if mask is not None:
|
||||
qk = qk + mask[:n_ctx, :n_ctx]
|
||||
qk = qk.float()
|
||||
if SDPA_AVAILABLE and MultiHeadAttention.use_sdpa:
|
||||
a = scaled_dot_product_attention(
|
||||
q, k, v, is_causal=mask is not None and n_ctx > 1
|
||||
)
|
||||
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
|
||||
qk = None
|
||||
else:
|
||||
qk = (q * scale) @ (k * scale).transpose(-1, -2)
|
||||
if mask is not None:
|
||||
qk = qk + mask[:n_ctx, :n_ctx]
|
||||
qk = qk.float()
|
||||
|
||||
w = F.softmax(qk, dim=-1).to(q.dtype)
|
||||
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
|
||||
w = F.softmax(qk, dim=-1).to(q.dtype)
|
||||
out = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
|
||||
qk = qk.detach()
|
||||
|
||||
return out, qk
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
|
@ -30,15 +30,19 @@ def remove_symbols_and_diacritics(s: str, keep=""):
|
||||
and drop any diacritics (category 'Mn' and some manual mappings)
|
||||
"""
|
||||
return "".join(
|
||||
c
|
||||
if c in keep
|
||||
else ADDITIONAL_DIACRITICS[c]
|
||||
if c in ADDITIONAL_DIACRITICS
|
||||
else ""
|
||||
if unicodedata.category(c) == "Mn"
|
||||
else " "
|
||||
if unicodedata.category(c)[0] in "MSP"
|
||||
else c
|
||||
(
|
||||
c
|
||||
if c in keep
|
||||
else (
|
||||
ADDITIONAL_DIACRITICS[c]
|
||||
if c in ADDITIONAL_DIACRITICS
|
||||
else (
|
||||
""
|
||||
if unicodedata.category(c) == "Mn"
|
||||
else " " if unicodedata.category(c)[0] in "MSP" else c
|
||||
)
|
||||
)
|
||||
)
|
||||
for c in unicodedata.normalize("NFKD", s)
|
||||
)
|
||||
|
||||
|
@ -191,7 +191,9 @@ def find_alignment(
|
||||
for i, block in enumerate(model.decoder.blocks)
|
||||
]
|
||||
|
||||
with torch.no_grad():
|
||||
from .model import disable_sdpa
|
||||
|
||||
with torch.no_grad(), disable_sdpa():
|
||||
logits = model(mel.unsqueeze(0), tokens.unsqueeze(0))[0]
|
||||
sampled_logits = logits[len(tokenizer.sot_sequence) :, : tokenizer.eot]
|
||||
token_probs = sampled_logits.softmax(dim=-1)
|
||||
|
@ -46,6 +46,7 @@ def transcribe(
|
||||
no_speech_threshold: Optional[float] = 0.6,
|
||||
condition_on_previous_text: bool = True,
|
||||
initial_prompt: Optional[str] = None,
|
||||
carry_initial_prompt: bool = False,
|
||||
word_timestamps: bool = False,
|
||||
prepend_punctuations: str = "\"'“¿([{-",
|
||||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
||||
@ -102,6 +103,11 @@ def transcribe(
|
||||
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
||||
to make it more likely to predict those word correctly.
|
||||
|
||||
carry_initial_prompt: bool
|
||||
If carry_initial_prompt is True, `initial_prompt` is prepended to the prompt of each internal
|
||||
`decode()` call. If there is not enough context space at the start of the prompt, it is
|
||||
left-sliced to make space.
|
||||
|
||||
decode_options: dict
|
||||
Keyword arguments to construct `DecodingOptions` instances
|
||||
|
||||
@ -208,6 +214,8 @@ def transcribe(
|
||||
if (
|
||||
no_speech_threshold is not None
|
||||
and decode_result.no_speech_prob > no_speech_threshold
|
||||
and logprob_threshold is not None
|
||||
and decode_result.avg_logprob < logprob_threshold
|
||||
):
|
||||
needs_fallback = False # silence
|
||||
if not needs_fallback:
|
||||
@ -227,9 +235,11 @@ def transcribe(
|
||||
all_segments = []
|
||||
prompt_reset_since = 0
|
||||
|
||||
remaining_prompt_length = model.dims.n_text_ctx // 2 - 1
|
||||
if initial_prompt is not None:
|
||||
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
|
||||
all_tokens.extend(initial_prompt_tokens)
|
||||
remaining_prompt_length -= len(initial_prompt_tokens)
|
||||
else:
|
||||
initial_prompt_tokens = []
|
||||
|
||||
@ -275,7 +285,13 @@ def transcribe(
|
||||
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
|
||||
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
|
||||
|
||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||||
if carry_initial_prompt:
|
||||
nignored = max(len(initial_prompt_tokens), prompt_reset_since)
|
||||
remaining_prompt = all_tokens[nignored:][-remaining_prompt_length:]
|
||||
decode_options["prompt"] = initial_prompt_tokens + remaining_prompt
|
||||
else:
|
||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||||
|
||||
result: DecodingResult = decode_with_fallback(mel_segment)
|
||||
tokens = torch.tensor(result.tokens)
|
||||
|
||||
@ -511,7 +527,7 @@ def cli():
|
||||
# fmt: off
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
||||
parser.add_argument("--model", default="small", type=valid_model_name, help="name of the Whisper model to use")
|
||||
parser.add_argument("--model", default="turbo", type=valid_model_name, help="name of the Whisper model to use")
|
||||
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
||||
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
||||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||||
@ -529,6 +545,8 @@ def cli():
|
||||
|
||||
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
||||
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
||||
parser.add_argument("--carry_initial_prompt", type=str2bool, default=False, help="if True, prepend initial_prompt to every internal decode() call. May reduce the effectiveness of condition_on_previous_text")
|
||||
|
||||
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
||||
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
||||
|
||||
|
@ -211,9 +211,11 @@ class SubtitlesWriter(ResultWriter):
|
||||
|
||||
yield start, end, "".join(
|
||||
[
|
||||
re.sub(r"^(\s*)(.*)$", r"\1<u>\2</u>", word)
|
||||
if j == i
|
||||
else word
|
||||
(
|
||||
re.sub(r"^(\s*)(.*)$", r"\1<u>\2</u>", word)
|
||||
if j == i
|
||||
else word
|
||||
)
|
||||
for j, word in enumerate(all_words)
|
||||
]
|
||||
)
|
||||
|
@ -1 +1 @@
|
||||
__version__ = "20231117"
|
||||
__version__ = "20240930"
|
||||
|
Loading…
x
Reference in New Issue
Block a user