mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 14:35:57 +00:00
Decoding improvements (#1033)
* suppress task tokens (transcribe/translate) * not ignoring the last segment ending with one timestamp
This commit is contained in:
parent
3e1780fd37
commit
eab8d920ed
@ -549,7 +549,13 @@ class DecodingTask:
|
|||||||
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
|
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
|
||||||
|
|
||||||
suppress_tokens.extend(
|
suppress_tokens.extend(
|
||||||
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm]
|
[
|
||||||
|
self.tokenizer.transcribe,
|
||||||
|
self.tokenizer.translate,
|
||||||
|
self.tokenizer.sot,
|
||||||
|
self.tokenizer.sot_prev,
|
||||||
|
self.tokenizer.sot_lm
|
||||||
|
]
|
||||||
)
|
)
|
||||||
if self.tokenizer.no_speech is not None:
|
if self.tokenizer.no_speech is not None:
|
||||||
# no-speech probability is collected separately
|
# no-speech probability is collected separately
|
||||||
|
|||||||
@ -160,6 +160,14 @@ class Tokenizer:
|
|||||||
def eot(self) -> int:
|
def eot(self) -> int:
|
||||||
return self.tokenizer.eos_token_id
|
return self.tokenizer.eos_token_id
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def transcribe(self) -> int:
|
||||||
|
return self._get_single_token_id("<|transcribe|>")
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def translate(self) -> int:
|
||||||
|
return self._get_single_token_id("<|translate|>")
|
||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def sot(self) -> int:
|
def sot(self) -> int:
|
||||||
return self._get_single_token_id("<|startoftranscript|>")
|
return self._get_single_token_id("<|startoftranscript|>")
|
||||||
|
|||||||
@ -197,35 +197,35 @@ def transcribe(
|
|||||||
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
||||||
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
|
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
|
||||||
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
|
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
|
||||||
|
if ended_with_single_timestamp := timestamp_tokens[-2:].tolist() == [False, True]:
|
||||||
|
consecutive = consecutive.tolist() + [len(tokens)]
|
||||||
last_slice = 0
|
last_slice = 0
|
||||||
for current_slice in consecutive:
|
for current_slice in consecutive:
|
||||||
sliced_tokens = tokens[last_slice:current_slice]
|
sliced_tokens = tokens[last_slice:current_slice]
|
||||||
start_timestamp_position = (
|
start_timestamp_pos = sliced_tokens[0].item() - tokenizer.timestamp_begin
|
||||||
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
end_timestamp_pos = sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
||||||
)
|
|
||||||
end_timestamp_position = (
|
|
||||||
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
|
||||||
)
|
|
||||||
add_segment(
|
add_segment(
|
||||||
start=timestamp_offset + start_timestamp_position * time_precision,
|
start=timestamp_offset + start_timestamp_pos * time_precision,
|
||||||
end=timestamp_offset + end_timestamp_position * time_precision,
|
end=timestamp_offset + end_timestamp_pos * time_precision,
|
||||||
text_tokens=sliced_tokens[1:-1],
|
text_tokens=sliced_tokens[1:-1],
|
||||||
result=result,
|
result=result,
|
||||||
)
|
)
|
||||||
last_slice = current_slice
|
last_slice = current_slice
|
||||||
last_timestamp_position = (
|
if ended_with_single_timestamp:
|
||||||
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
# single timestamp at the end means no speech after the last timestamp.
|
||||||
)
|
seek += segment.shape[-1]
|
||||||
seek += last_timestamp_position * input_stride
|
else:
|
||||||
|
# otherwise, ignore the unfinished segment and seek to the last timestamp
|
||||||
|
last_timestamp_pos = tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
||||||
|
seek += last_timestamp_pos * input_stride
|
||||||
all_tokens.extend(tokens[: last_slice + 1].tolist())
|
all_tokens.extend(tokens[: last_slice + 1].tolist())
|
||||||
else:
|
else:
|
||||||
duration = segment_duration
|
duration = segment_duration
|
||||||
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
||||||
if len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin:
|
if len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin:
|
||||||
# no consecutive timestamps but it has a timestamp; use the last one.
|
# no consecutive timestamps but it has a timestamp; use the last one.
|
||||||
# single timestamp at the end means no speech after the last timestamp.
|
last_timestamp_pos = timestamps[-1].item() - tokenizer.timestamp_begin
|
||||||
last_timestamp_position = timestamps[-1].item() - tokenizer.timestamp_begin
|
duration = last_timestamp_pos * time_precision
|
||||||
duration = last_timestamp_position * time_precision
|
|
||||||
|
|
||||||
add_segment(
|
add_segment(
|
||||||
start=timestamp_offset,
|
start=timestamp_offset,
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user