Avoid keeping redundant copies of model weights in memory during load (#42)

* don't keep copies of model weights in host memory

* adding type annotation

Co-authored-by: Jong Wook Kim <jongwook@nyu.edu>
This commit is contained in:
Niklas K 2022-09-23 05:57:39 +02:00 committed by GitHub
parent a4fe05aa71
commit f296bcd3fa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -27,12 +27,11 @@ _MODELS = {
}
def _download(url: str, root: str) -> bytes:
def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]:
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, filename)
download_target = os.path.join(root, os.path.basename(url))
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
@ -40,7 +39,7 @@ def _download(url: str, root: str) -> bytes:
if os.path.isfile(download_target):
model_bytes = open(download_target, "rb").read()
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
return model_bytes
return model_bytes if in_memory else download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
@ -58,7 +57,7 @@ def _download(url: str, root: str) -> bytes:
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.")
return model_bytes
return model_bytes if in_memory else download_target
def available_models() -> List[str]:
@ -66,7 +65,7 @@ def available_models() -> List[str]:
return list(_MODELS.keys())
def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None) -> Whisper:
def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None, in_memory: bool = False) -> Whisper:
"""
Load a Whisper ASR model
@ -79,28 +78,33 @@ def load_model(name: str, device: Optional[Union[str, torch.device]] = None, dow
the PyTorch device to put the model into
download_root: str
path to download the model files; by default, it uses "~/.cache/whisper"
in_memory: bool
whether to preload the model weights into host memory
Returns
-------
model : Whisper
The Whisper ASR model instance
"""
if name in _MODELS:
model_bytes = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/whisper"))
elif os.path.isfile(name):
model_bytes = open(name, "rb").read()
else:
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
with io.BytesIO(model_bytes) as fp:
checkpoint = torch.load(fp, map_location="cpu")
dims = ModelDimensions(**checkpoint["dims"])
state_dict = checkpoint["model_state_dict"]
model = Whisper(dims)
model.load_state_dict(state_dict)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
if download_root is None:
download_root = os.path.join(os.path.expanduser("~"), ".cache", "whisper")
if name in _MODELS:
checkpoint_file = _download(_MODELS[name], download_root, in_memory)
elif os.path.isfile(name):
checkpoint_file = open(name, "rb").read() if in_memory else name
else:
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
with (io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")) as fp:
checkpoint = torch.load(fp, map_location=device)
del checkpoint_file
dims = ModelDimensions(**checkpoint["dims"])
model = Whisper(dims)
model.load_state_dict(checkpoint["model_state_dict"])
return model.to(device)