Compare commits

..

No commits in common. "main" and "v20231117" have entirely different histories.

22 changed files with 139 additions and 436 deletions

View File

@ -1,13 +0,0 @@
# Keep GitHub Actions up to date with GitHub's Dependabot...
# https://docs.github.com/en/code-security/dependabot/working-with-dependabot/keeping-your-actions-up-to-date-with-dependabot
# https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file#package-ecosystem
version: 2
updates:
- package-ecosystem: github-actions
directory: /
groups:
github-actions:
patterns:
- "*" # Group all Actions updates into a single larger pull request
schedule:
interval: weekly

View File

@ -8,23 +8,23 @@ jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: actions-ecosystem/action-regex-match@v2
id: regex-match
with:
text: ${{ github.event.head_commit.message }}
regex: '^Release ([^ ]+)'
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.12'
python-version: '3.8'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install setuptools wheel twine build
pip install setuptools wheel twine
- name: Release
if: ${{ steps.regex-match.outputs.match != '' }}
uses: softprops/action-gh-release@v2
uses: softprops/action-gh-release@v1
with:
tag_name: v${{ steps.regex-match.outputs.group1 }}
- name: Build and publish
@ -33,5 +33,5 @@ jobs:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: |
python -m build --sdist
python setup.py sdist
twine upload dist/*

View File

@ -11,19 +11,19 @@ jobs:
pre-commit:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Fetch base branch
run: git fetch origin ${{ github.base_ref }}
- uses: actions/setup-python@v5
- uses: actions/setup-python@v4
with:
python-version: "3.9"
python-version: "3.8"
architecture: x64
- name: Get pip cache dir
id: pip-cache
run: |
echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
- name: pip/pre-commit cache
uses: actions/cache@v4
uses: actions/cache@v3
with:
path: |
${{ steps.pip-cache.outputs.dir }}
@ -33,47 +33,24 @@ jobs:
${{ runner.os }}-pip-pre-commit
- name: pre-commit
run: |
pip install --upgrade pre-commit
pip install -U pre-commit
pre-commit install --install-hooks
pre-commit run --all-files
whisper-test:
needs: pre-commit
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
include:
- python-version: '3.8'
pytorch-version: 1.10.1
numpy-requirement: "'numpy<2'"
- python-version: '3.8'
pytorch-version: 1.13.1
numpy-requirement: "'numpy<2'"
- python-version: '3.8'
pytorch-version: 2.0.1
numpy-requirement: "'numpy<2'"
- python-version: '3.9'
pytorch-version: 2.1.2
numpy-requirement: "'numpy<2'"
- python-version: '3.10'
pytorch-version: 2.2.2
numpy-requirement: "'numpy<2'"
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: [1.13.1, 2.0.0]
exclude:
- python-version: '3.11'
pytorch-version: 2.3.1
numpy-requirement: "'numpy'"
- python-version: '3.12'
pytorch-version: 2.4.1
numpy-requirement: "'numpy'"
- python-version: '3.12'
pytorch-version: 2.5.1
numpy-requirement: "'numpy'"
- python-version: '3.13'
pytorch-version: 2.5.1
numpy-requirement: "'numpy'"
pytorch-version: 1.13.1
steps:
- uses: conda-incubator/setup-miniconda@v3
- uses: conda-incubator/setup-miniconda@v2
- run: conda install -n test ffmpeg python=${{ matrix.python-version }}
- uses: actions/checkout@v4
- run: pip3 install torch==${{ matrix.pytorch-version }}+cpu --index-url https://download.pytorch.org/whl/cpu
- uses: actions/checkout@v3
- run: echo "$CONDA/envs/test/bin" >> $GITHUB_PATH
- run: pip3 install .["dev"] ${{ matrix.numpy-requirement }} torch==${{ matrix.pytorch-version }}+cpu --index-url https://download.pytorch.org/whl/cpu --extra-index-url https://pypi.org/simple
- run: pip install .["dev"]
- run: pytest --durations=0 -vv -k 'not test_transcribe or test_transcribe[tiny] or test_transcribe[tiny.en]' -m 'not requires_cuda'

View File

@ -1,6 +1,6 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
rev: v4.0.1
hooks:
- id: check-json
- id: end-of-file-fixer
@ -11,17 +11,17 @@ repos:
- id: check-added-large-files
args: [--maxkb=4096]
- repo: https://github.com/psf/black
rev: 25.1.0
rev: 23.7.0
hooks:
- id: black
- repo: https://github.com/pycqa/isort
rev: 6.0.0
rev: 5.12.0
hooks:
- id: isort
name: isort (python)
args: ["--profile", "black", "-l", "88", "--trailing-comma", "--multi-line", "3"]
- repo: https://github.com/pycqa/flake8.git
rev: 7.1.1
rev: 6.0.0
hooks:
- id: flake8
types: [python]

View File

@ -1,40 +1,5 @@
# CHANGELOG
## [v20250625](https://github.com/openai/whisper/releases/tag/v20250625)
* Fix: Update torch.load to use weights_only=True to prevent security w… ([#2451](https://github.com/openai/whisper/pull/2451))
* Fix: Ensure DTW cost tensor is on the same device as input tensor ([#2561](https://github.com/openai/whisper/pull/2561))
* docs: updated README to specify translation model limitation ([#2547](https://github.com/openai/whisper/pull/2547))
* Fixed triton kernel update to support latest triton versions ([#2588](https://github.com/openai/whisper/pull/2588))
* Fix: GitHub display errors for Jupyter notebooks ([#2589](https://github.com/openai/whisper/pull/2589))
* Bump the github-actions group with 3 updates ([#2592](https://github.com/openai/whisper/pull/2592))
* Keep GitHub Actions up to date with GitHub's Dependabot ([#2486](https://github.com/openai/whisper/pull/2486))
* pre-commit: Upgrade black v25.1.0 and isort v6.0.0 ([#2514](https://github.com/openai/whisper/pull/2514))
* GitHub Actions: Add Python 3.13 to the testing ([#2487](https://github.com/openai/whisper/pull/2487))
* PEP 621: Migrate from setup.py to pyproject.toml ([#2435](https://github.com/openai/whisper/pull/2435))
* pre-commit autoupdate && pre-commit run --all-files ([#2484](https://github.com/openai/whisper/pull/2484))
* Upgrade GitHub Actions ([#2430](https://github.com/openai/whisper/pull/2430))
* Bugfix: Illogical "Avoid computing higher temperatures on no_speech" ([#1903](https://github.com/openai/whisper/pull/1903))
* Updating README and doc strings to reflect that n_mels can now be 128 ([#2049](https://github.com/openai/whisper/pull/2049))
* fix typo data/README.md ([#2433](https://github.com/openai/whisper/pull/2433))
* Update README.md ([#2379](https://github.com/openai/whisper/pull/2379))
* Add option to carry initial_prompt with the sliding window ([#2343](https://github.com/openai/whisper/pull/2343))
* more pytorch versions in tests ([#2408](https://github.com/openai/whisper/pull/2408))
## [v20240930](https://github.com/openai/whisper/releases/tag/v20240930)
* allowing numpy 2 in tests ([#2362](https://github.com/openai/whisper/pull/2362))
* large-v3-turbo model ([#2361](https://github.com/openai/whisper/pull/2361))
* test on python/pytorch versions up to 3.12 and 2.4.1 ([#2360](https://github.com/openai/whisper/pull/2360))
* using sdpa if available ([#2359](https://github.com/openai/whisper/pull/2359))
## [v20240927](https://github.com/openai/whisper/releases/tag/v20240927)
* pinning numpy<2 in tests ([#2332](https://github.com/openai/whisper/pull/2332))
* Relax triton requirements for compatibility with pytorch 2.4 and newer ([#2307](https://github.com/openai/whisper/pull/2307))
* Skip silence around hallucinations ([#1838](https://github.com/openai/whisper/pull/1838))
* Fix triton env marker ([#1887](https://github.com/openai/whisper/pull/1887))
## [v20231117](https://github.com/openai/whisper/releases/tag/v20231117)
* Relax triton requirements for compatibility with pytorch 2.1 and newer ([#1802](https://github.com/openai/whisper/pull/1802))

View File

@ -57,55 +57,41 @@ pip install setuptools-rust
## Available models and languages
There are six model sizes, four with English-only versions, offering speed and accuracy tradeoffs.
Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model.
The relative speeds below are measured by transcribing English speech on a A100, and the real-world speed may vary significantly depending on many factors including the language, the speaking speed, and the available hardware.
There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model; actual speed may vary depending on many factors including the available hardware.
| Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~10x |
| base | 74 M | `base.en` | `base` | ~1 GB | ~7x |
| small | 244 M | `small.en` | `small` | ~2 GB | ~4x |
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
| base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
| small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
| medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
| large | 1550 M | N/A | `large` | ~10 GB | 1x |
| turbo | 809 M | N/A | `turbo` | ~6 GB | ~8x |
The `.en` models for English-only applications tend to perform better, especially for the `tiny.en` and `base.en` models. We observed that the difference becomes less significant for the `small.en` and `medium.en` models.
Additionally, the `turbo` model is an optimized version of `large-v3` that offers faster transcription speed with a minimal degradation in accuracy.
Whisper's performance varies widely depending on the language. The figure below shows a performance breakdown of `large-v3` and `large-v2` models by language, using WERs (word error rates) or CER (character error rates, shown in *Italic*) evaluated on the Common Voice 15 and Fleurs datasets. Additional WER/CER metrics corresponding to the other models and datasets can be found in Appendix D.1, D.2, and D.4 of [the paper](https://arxiv.org/abs/2212.04356), as well as the BLEU (Bilingual Evaluation Understudy) scores for translation in Appendix D.3.
![WER breakdown by language](https://github.com/openai/whisper/assets/266841/f4619d66-1058-4005-8f67-a9d811b77c62)
## Command-line usage
The following command will transcribe speech in audio files, using the `turbo` model:
The following command will transcribe speech in audio files, using the `medium` model:
```bash
whisper audio.flac audio.mp3 audio.wav --model turbo
```
whisper audio.flac audio.mp3 audio.wav --model medium
The default setting (which selects the `turbo` model) works well for transcribing English. However, **the `turbo` model is not trained for translation tasks**. If you need to **translate non-English speech into English**, use one of the **multilingual models** (`tiny`, `base`, `small`, `medium`, `large`) instead of `turbo`.
The default setting (which selects the `small` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option:
For example, to transcribe an audio file containing non-English speech, you can specify the language:
```bash
whisper japanese.wav --language Japanese
```
To **translate** speech into English, use:
Adding `--task translate` will translate the speech into English:
```bash
whisper japanese.wav --model medium --language Japanese --task translate
```
> **Note:** The `turbo` model will return the original language even if `--task translate` is specified. Use `medium` or `large` for the best translation results.
whisper japanese.wav --language Japanese --task translate
Run the following to view all available options:
```bash
whisper --help
```
See [tokenizer.py](https://github.com/openai/whisper/blob/main/whisper/tokenizer.py) for the list of all available languages.
@ -117,7 +103,7 @@ Transcription can also be performed within Python:
```python
import whisper
model = whisper.load_model("turbo")
model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])
```
@ -129,14 +115,14 @@ Below is an example usage of `whisper.detect_language()` and `whisper.decode()`
```python
import whisper
model = whisper.load_model("turbo")
model = whisper.load_model("base")
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio, n_mels=model.dims.n_mels).to(model.device)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)

View File

@ -45,7 +45,7 @@ We downloaded the [CHiME-5 dataset](https://spandh.dcs.shef.ac.uk//chime_challen
### AMI-IHM, AMI-SDM1
We preprocessed the [AMI Corpus](https://groups.inf.ed.ac.uk/ami/corpus/overview.shtml) by following the stage 0 and 2 of the [s5b recipe](https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5b).
We preprocessed the [AMI Corpus](https://groups.inf.ed.ac.uk/ami/corpus/overview.shtml) by following the stage 0 ad 2 of the [s5b recipe](https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5b).
## Long-form English-only datasets

View File

@ -16,15 +16,13 @@ The Whisper models are trained for speech recognition and translation tasks, cap
| small | 244 M | ✓ | ✓ |
| medium | 769 M | ✓ | ✓ |
| large | 1550 M | | ✓ |
| turbo | 798 M | | ✓ |
In December 2022, we [released an improved large model named `large-v2`](https://github.com/openai/whisper/discussions/661), and `large-v3` in November 2023.
Additionally, we've added a `turbo` model in September 2024 which is optimized for inference speed.
### Release date
September 2022 (original series), December 2022 (`large-v2`), November 2023 (`large-v3`), September 2024 (`large-v3-turbo`)
September 2022 (original series), December 2022 (`large-v2`), and November 2023 (`large-v3`)
### Model type

View File

@ -949,8 +949,7 @@
"style": "IPY_MODEL_039b53f2702c4179af7e0548018d0588",
"value": " 164/164 [05:08&lt;00:00, 1.86s/it]"
}
},
"state": {}
}
}
}
},

View File

@ -4219,8 +4219,7 @@
"_view_name": "StyleView",
"description_width": ""
}
},
"state": {}
}
}
}
},

View File

@ -1,50 +1,3 @@
[build-system]
build-backend = "setuptools.build_meta"
requires = [ "setuptools>=61.2" ]
[project]
name = "openai-whisper"
description = "Robust Speech Recognition via Large-Scale Weak Supervision"
readme.content-type = "text/markdown"
readme.file = "README.md"
license = { text = "MIT" }
authors = [ { name = "OpenAI" } ]
requires-python = ">=3.8"
classifiers = [
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
]
dynamic = [ "version" ]
dependencies = [
"more-itertools",
"numba",
"numpy",
"tiktoken",
"torch",
"tqdm",
"triton>=2; (platform_machine=='x86_64' and sys_platform=='linux') or sys_platform=='linux2'",
]
optional-dependencies.dev = [ "black", "flake8", "isort", "pytest", "scipy" ]
urls = { Homepage = "https://github.com/openai/whisper" }
scripts.whisper = "whisper.transcribe:cli"
[tool.setuptools]
py-modules = [ "whisper" ]
include-package-data = true
[tool.setuptools.dynamic]
version = { attr = "whisper.version.__version__" }
[tool.setuptools.packages.find]
exclude = [ "tests*" ]
namespaces = false
[tool.black]
[tool.isort]
@ -52,3 +5,4 @@ profile = "black"
include_trailing_comma = true
line_length = 88
multi_line_output = 3

View File

@ -4,4 +4,3 @@ torch
tqdm
more-itertools
tiktoken
triton>=2.0.0;platform_machine=="x86_64" and sys_platform=="linux" or sys_platform=="linux2"

43
setup.py Normal file
View File

@ -0,0 +1,43 @@
import os
import platform
import sys
import pkg_resources
from setuptools import find_packages, setup
def read_version(fname="whisper/version.py"):
exec(compile(open(fname, encoding="utf-8").read(), fname, "exec"))
return locals()["__version__"]
requirements = []
if sys.platform.startswith("linux") and platform.machine() == "x86_64":
requirements.append("triton>=2.0.0,<3")
setup(
name="openai-whisper",
py_modules=["whisper"],
version=read_version(),
description="Robust Speech Recognition via Large-Scale Weak Supervision",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",
readme="README.md",
python_requires=">=3.8",
author="OpenAI",
url="https://github.com/openai/whisper",
license="MIT",
packages=find_packages(exclude=["tests*"]),
install_requires=requirements
+ [
str(r)
for r in pkg_resources.parse_requirements(
open(os.path.join(os.path.dirname(__file__), "requirements.txt"))
)
],
entry_points={
"console_scripts": ["whisper=whisper.transcribe:cli"],
},
include_package_data=True,
extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]},
)

View File

@ -27,8 +27,6 @@ _MODELS = {
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
"large-v3-turbo": "https://openaipublic.azureedge.net/main/whisper/models/aff26ae408abcba5fbf8813c21e62b0941638c5f6eebfb145be0c9839262a19a/large-v3-turbo.pt",
"turbo": "https://openaipublic.azureedge.net/main/whisper/models/aff26ae408abcba5fbf8813c21e62b0941638c5f6eebfb145be0c9839262a19a/large-v3-turbo.pt",
}
# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
@ -46,8 +44,6 @@ _ALIGNMENT_HEADS = {
"large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
"large-v3-turbo": b"ABzY8j^C+e0{>%RARaKHP%t(lGR*)0g!tONPyhe`",
"turbo": b"ABzY8j^C+e0{>%RARaKHP%t(lGR*)0g!tONPyhe`",
}
@ -147,8 +143,7 @@ def load_model(
with (
io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")
) as fp:
kwargs = {"weights_only": True} if torch.__version__ >= "1.13" else {}
checkpoint = torch.load(fp, map_location=device, **kwargs)
checkpoint = torch.load(fp, map_location=device)
del checkpoint_file
dims = ModelDimensions(**checkpoint["dims"])

View File

@ -122,7 +122,7 @@ def log_mel_spectrogram(
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 and 128 are supported
The number of Mel-frequency filters, only 80 is supported
padding: int
Number of zero samples to pad to the right
@ -132,7 +132,7 @@ def log_mel_spectrogram(
Returns
-------
torch.Tensor, shape = (n_mels, n_frames)
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):

View File

@ -1,8 +1,7 @@
import base64
import gzip
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Dict, Iterable, Optional, Tuple
from typing import Dict, Iterable, Optional
import numpy as np
import torch
@ -13,14 +12,6 @@ from .decoding import decode as decode_function
from .decoding import detect_language as detect_language_function
from .transcribe import transcribe as transcribe_function
try:
from torch.nn.functional import scaled_dot_product_attention
SDPA_AVAILABLE = True
except (ImportError, RuntimeError, OSError):
scaled_dot_product_attention = None
SDPA_AVAILABLE = False
@dataclass
class ModelDimensions:
@ -68,19 +59,7 @@ def sinusoids(length, channels, max_timescale=10000):
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
@contextmanager
def disable_sdpa():
prev_state = MultiHeadAttention.use_sdpa
try:
MultiHeadAttention.use_sdpa = False
yield
finally:
MultiHeadAttention.use_sdpa = prev_state
class MultiHeadAttention(nn.Module):
use_sdpa = True
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
@ -113,30 +92,20 @@ class MultiHeadAttention(nn.Module):
def qkv_attention(
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
):
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
if SDPA_AVAILABLE and MultiHeadAttention.use_sdpa:
a = scaled_dot_product_attention(
q, k, v, is_causal=mask is not None and n_ctx > 1
)
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
qk = None
else:
qk = (q * scale) @ (k * scale).transpose(-1, -2)
qk = q @ k
if mask is not None:
qk = qk + mask[:n_ctx, :n_ctx]
qk = qk.float()
w = F.softmax(qk, dim=-1).to(q.dtype)
out = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
qk = qk.detach()
return out, qk
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
class ResidualAttentionBlock(nn.Module):

View File

@ -30,19 +30,15 @@ def remove_symbols_and_diacritics(s: str, keep=""):
and drop any diacritics (category 'Mn' and some manual mappings)
"""
return "".join(
(
c
if c in keep
else (
ADDITIONAL_DIACRITICS[c]
else ADDITIONAL_DIACRITICS[c]
if c in ADDITIONAL_DIACRITICS
else (
""
else ""
if unicodedata.category(c) == "Mn"
else " " if unicodedata.category(c)[0] in "MSP" else c
)
)
)
else " "
if unicodedata.category(c)[0] in "MSP"
else c
for c in unicodedata.normalize("NFKD", s)
)

View File

@ -117,7 +117,7 @@ def dtw_cuda(x, BLOCK_SIZE=1024):
x_skew = x_skew.T.contiguous()
cost = torch.ones(N + M + 2, M + 2) * np.inf
cost[0, 0] = 0
cost = cost.to(x.device)
cost = cost.cuda()
trace = torch.zeros_like(cost, dtype=torch.int32)
dtw_kernel[(1,)](
@ -191,9 +191,7 @@ def find_alignment(
for i, block in enumerate(model.decoder.blocks)
]
from .model import disable_sdpa
with torch.no_grad(), disable_sdpa():
with torch.no_grad():
logits = model(mel.unsqueeze(0), tokens.unsqueeze(0))[0]
sampled_logits = logits[len(tokenizer.sot_sequence) :, : tokenizer.eot]
token_probs = sampled_logits.softmax(dim=-1)
@ -301,7 +299,6 @@ def add_word_timestamps(
word_durations = np.array([t.end - t.start for t in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.

View File

@ -2,7 +2,7 @@ import argparse
import os
import traceback
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Optional, Tuple, Union
import numpy as np
import torch
@ -23,7 +23,6 @@ from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
from .utils import (
exact_div,
format_timestamp,
get_end,
get_writer,
make_safe,
optional_float,
@ -46,12 +45,9 @@ def transcribe(
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
initial_prompt: Optional[str] = None,
carry_initial_prompt: bool = False,
word_timestamps: bool = False,
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,!?::”)]}、",
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
**decode_options,
):
"""
@ -103,22 +99,9 @@ def transcribe(
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
to make it more likely to predict those word correctly.
carry_initial_prompt: bool
If carry_initial_prompt is True, `initial_prompt` is prepended to the prompt of each internal
`decode()` call. If there is not enough context space at the start of the prompt, it is
left-sliced to make space.
decode_options: dict
Keyword arguments to construct `DecodingOptions` instances
clip_timestamps: Union[str, List[float]]
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process.
The last end timestamp defaults to the end of the file.
hallucination_silence_threshold: Optional[float]
When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
when a possible hallucination is detected
Returns
-------
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
@ -138,7 +121,6 @@ def transcribe(
# Pad 30-seconds of silence to the input audio, for slicing
mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
content_frames = mel.shape[-1] - N_FRAMES
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)
if decode_options.get("language", None) is None:
if not model.is_multilingual:
@ -165,19 +147,6 @@ def transcribe(
task=task,
)
if isinstance(clip_timestamps, str):
clip_timestamps = [
float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else [])
]
seek_points: List[int] = [round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps]
if len(seek_points) == 0:
seek_points.append(0)
if len(seek_points) % 2 == 1:
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))
punctuation = "\"'“¿([{-\"'.。,!?::”)]}、"
if word_timestamps and task == "translate":
warnings.warn("Word-level timestamps on translations may not be reliable.")
@ -214,8 +183,6 @@ def transcribe(
if (
no_speech_threshold is not None
and decode_result.no_speech_prob > no_speech_threshold
and logprob_threshold is not None
and decode_result.avg_logprob < logprob_threshold
):
needs_fallback = False # silence
if not needs_fallback:
@ -223,8 +190,7 @@ def transcribe(
return decode_result
clip_idx = 0
seek = seek_clips[clip_idx][0]
seek = 0
input_stride = exact_div(
N_FRAMES, model.dims.n_audio_ctx
) # mel frames per output token: 2
@ -235,11 +201,9 @@ def transcribe(
all_segments = []
prompt_reset_since = 0
remaining_prompt_length = model.dims.n_text_ctx // 2 - 1
if initial_prompt is not None:
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
all_tokens.extend(initial_prompt_tokens)
remaining_prompt_length -= len(initial_prompt_tokens)
else:
initial_prompt_tokens = []
@ -265,33 +229,14 @@ def transcribe(
total=content_frames, unit="frames", disable=verbose is not False
) as pbar:
last_speech_timestamp = 0.0
# NOTE: This loop is obscurely flattened to make the diff readable.
# A later commit should turn this into a simpler nested loop.
# for seek_clip_start, seek_clip_end in seek_clips:
# while seek < seek_clip_end
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek < seek_clip_start:
seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips):
seek = seek_clips[clip_idx][0]
continue
while seek < content_frames:
time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
window_end_time = float((seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE)
segment_size = min(N_FRAMES, content_frames - seek, seek_clip_end - seek)
mel_segment = mel[:, seek : seek + segment_size]
mel_segment = mel[:, seek : seek + N_FRAMES]
segment_size = min(N_FRAMES, content_frames - seek)
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
if carry_initial_prompt:
nignored = max(len(initial_prompt_tokens), prompt_reset_since)
remaining_prompt = all_tokens[nignored:][-remaining_prompt_length:]
decode_options["prompt"] = initial_prompt_tokens + remaining_prompt
else:
decode_options["prompt"] = all_tokens[prompt_reset_since:]
result: DecodingResult = decode_with_fallback(mel_segment)
tokens = torch.tensor(result.tokens)
@ -312,30 +257,6 @@ def transcribe(
previous_seek = seek
current_segments = []
# anomalous words are very long/short/improbable
def word_anomaly_score(word: dict) -> float:
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15:
score += 1.0
if duration < 0.133:
score += (0.133 - duration) * 15
if duration > 2.0:
score += duration - 2.0
return score
def is_segment_anomaly(segment: Optional[dict]) -> bool:
if segment is None or not segment["words"]:
return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)
def next_words_segment(segments: List[dict]) -> Optional[dict]:
return next((s for s in segments if s["words"]), None)
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
@ -409,71 +330,17 @@ def transcribe(
append_punctuations=append_punctuations,
last_speech_timestamp=last_speech_timestamp,
)
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
seek = round(last_word_end * FRAMES_PER_SECOND)
# skip silence before possible hallucinations
if hallucination_silence_threshold is not None:
threshold = hallucination_silence_threshold
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
remaining_duration = window_end_time - last_word_end
if remaining_duration > threshold:
seek = round(last_word_end * FRAMES_PER_SECOND)
else:
seek = previous_seek + segment_size
# if first segment might be a hallucination, skip leading silence
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * FRAMES_PER_SECOND)
continue
# skip silence before any possible hallucination that is surrounded
# by silence or more hallucinations
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]:
continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(
current_segments[si + 1 :]
word_end_timestamps = [
w["end"] for s in current_segments for w in s["words"]
]
if len(word_end_timestamps) > 0:
last_speech_timestamp = word_end_timestamps[-1]
if not single_timestamp_ending and len(word_end_timestamps) > 0:
seek_shift = round(
(word_end_timestamps[-1] - time_offset) * FRAMES_PER_SECOND
)
if next_segment is not None:
hal_next_start = next_segment["words"][0]["start"]
else:
hal_next_start = time_offset + segment_duration
silence_before = (
segment["start"] - hal_last_end > threshold
or segment["start"] < threshold
or segment["start"] - time_offset < 2.0
)
silence_after = (
hal_next_start - segment["end"] > threshold
or is_segment_anomaly(next_segment)
or window_end_time - segment["end"] < 2.0
)
if silence_before and silence_after:
seek = round(
max(time_offset + 1, segment["start"])
* FRAMES_PER_SECOND
)
if content_duration - segment["end"] < threshold:
seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]
last_word_end = get_end(current_segments)
if last_word_end is not None:
last_speech_timestamp = last_word_end
if seek_shift > 0:
seek = previous_seek + seek_shift
if verbose:
for segment in current_segments:
@ -527,7 +394,7 @@ def cli():
# fmt: off
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
parser.add_argument("--model", default="turbo", type=valid_model_name, help="name of the Whisper model to use")
parser.add_argument("--model", default="small", type=valid_model_name, help="name of the Whisper model to use")
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
@ -545,8 +412,6 @@ def cli():
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
parser.add_argument("--carry_initial_prompt", type=str2bool, default=False, help="if True, prepend initial_prompt to every internal decode() call. May reduce the effectiveness of condition_on_previous_text")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
@ -562,8 +427,6 @@ def cli():
parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of lines in a segment")
parser.add_argument("--max_words_per_line", type=optional_int, default=None, help="(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment")
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
parser.add_argument("--clip_timestamps", type=str, default="0", help="comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process, where the last end timestamp defaults to the end of the file")
parser.add_argument("--hallucination_silence_threshold", type=optional_float, help="(requires --word_timestamps True) skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected")
# fmt: on
args = parser.parse_args().__dict__

View File

@ -60,7 +60,7 @@ def median_kernel(filter_width: int):
tl.store(y_ptr + offsets, MIDDLE_ROW_HERE, mask=mask) # noqa: F821
kernel = triton.JITFunction(kernel.fn)
new_kernel = kernel.src.replace(
kernel.src = kernel.src.replace(
" LOAD_ALL_ROWS_HERE",
"\n".join(
[
@ -69,8 +69,7 @@ def median_kernel(filter_width: int):
]
),
)
new_kernel = new_kernel.replace(
kernel.src = kernel.src.replace(
" BUBBLESORT_HERE",
"\n\n".join(
[
@ -91,14 +90,7 @@ def median_kernel(filter_width: int):
]
),
)
new_kernel = new_kernel.replace("MIDDLE_ROW_HERE", f"row{filter_width // 2}")
if hasattr(kernel, "_unsafe_update_src") is True:
kernel._unsafe_update_src(new_kernel)
kernel.hash = None
else:
kernel.src = new_kernel
kernel.src = kernel.src.replace("MIDDLE_ROW_HERE", f"row{filter_width // 2}")
return kernel

View File

@ -3,7 +3,7 @@ import os
import re
import sys
import zlib
from typing import Callable, List, Optional, TextIO
from typing import Callable, Optional, TextIO
system_encoding = sys.getdefaultencoding()
@ -68,20 +68,6 @@ def format_timestamp(
)
def get_start(segments: List[dict]) -> Optional[float]:
return next(
(w["start"] for s in segments for w in s["words"]),
segments[0]["start"] if segments else None,
)
def get_end(segments: List[dict]) -> Optional[float]:
return next(
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
segments[-1]["end"] if segments else None,
)
class ResultWriter:
extension: str
@ -143,8 +129,8 @@ class SubtitlesWriter(ResultWriter):
line_len = 0
line_count = 1
# the next subtitle to yield (a list of word timings with whitespace)
subtitle: List[dict] = []
last: float = get_start(result["segments"]) or 0.0
subtitle: list[dict] = []
last = result["segments"][0]["words"][0]["start"]
for segment in result["segments"]:
chunk_index = 0
words_count = max_words_per_line
@ -209,11 +195,9 @@ class SubtitlesWriter(ResultWriter):
yield start, end, "".join(
[
(
re.sub(r"^(\s*)(.*)$", r"\1<u>\2</u>", word)
if j == i
else word
)
for j, word in enumerate(all_words)
]
)

View File

@ -1 +1 @@
__version__ = "20250625"
__version__ = "20231117"