import timeit import whisper from typing import Tuple import matplotlib.pyplot as plt def load_model(model_name: str = "tiny.en", ff: bool = False, cut_region=None) -> whisper.Whisper: return whisper.load_model(model_name, ext_feature_flag=ff, cut_region=cut_region) def transcribe(model: whisper.Whisper, audio_path: str) -> Tuple[str, float]: start_time = timeit.default_timer() transcription = model.transcribe(audio_path).get("text", "") elapsed_time = timeit.default_timer() - start_time return transcription, elapsed_time def calculate_wer(hypothesis: str, reference: str) -> float: hyp_words = hypothesis.strip().lower().split() ref_words = reference.strip().lower().split() if not ref_words: return float("inf") if hyp_words else 0.0 dp = [[0] * (len(hyp_words) + 1) for _ in range(len(ref_words) + 1)] for i in range(len(ref_words) + 1): dp[i][0] = i for j in range(len(hyp_words) + 1): dp[0][j] = j for i in range(1, len(ref_words) + 1): for j in range(1, len(hyp_words) + 1): if ref_words[i - 1] == hyp_words[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = min( dp[i - 1][j] + 1, # deletion dp[i][j - 1] + 1, # insertion dp[i - 1][j - 1] + 1, # substitution ) return dp[len(ref_words)][len(hyp_words)] / len(ref_words)