whisper/tests/test_transcribe.py
2024-07-22 13:16:53 -07:00

121 lines
3.7 KiB
Python

import os
import pytest
import torch
import whisper
from whisper.audio import CHUNK_LENGTH
from whisper.tokenizer import get_tokenizer
from whisper.transcribe import Transcriber
@pytest.mark.parametrize("model_name", whisper.available_models())
def test_transcribe(model_name: str):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = whisper.load_model(model_name).to(device)
audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac")
language = "en" if model_name.endswith(".en") else None
result = model.transcribe(
audio_path, language=language, temperature=0.0, word_timestamps=True
)
assert result["language"] == "en"
assert result["text"] == "".join([s["text"] for s in result["segments"]])
transcription = result["text"].lower()
assert "my fellow americans" in transcription
assert "your country" in transcription
assert "do for you" in transcription
tokenizer = get_tokenizer(model.is_multilingual, num_languages=model.num_languages)
all_tokens = [t for s in result["segments"] for t in s["tokens"]]
assert tokenizer.decode(all_tokens) == result["text"]
assert tokenizer.decode_with_timestamps(all_tokens).startswith("<|0.00|>")
timing_checked = False
for segment in result["segments"]:
for timing in segment["words"]:
assert timing["start"] < timing["end"]
if timing["word"].strip(" ,") == "Americans":
assert timing["start"] <= 1.8
assert timing["end"] >= 1.8
timing_checked = True
assert timing_checked
class MockTokenizer:
def __init__(self, language, **kw):
self.language, self._kw = language, kw
for k, v in kw.items():
setattr(self, k, v)
def encode(self, prompt):
return [self.language, self, prompt]
class OnDemand:
def __init__(self, seq=(), relative=True):
self.seq, self.relative = seq, relative
self.prev, self.given = 0, 0
def __getitem__(self, key):
_key = self.given if self.relative else key
self.prev = (
self.seq[_key]
if _key < len(self.seq)
else int(input(f"lang @ {_key}: ") or self.prev)
)
self.given += 1
return self.prev
def __len__(self):
return CHUNK_LENGTH + 2 if self.relative else len(self.seq)
class TranscriberTest(Transcriber):
sample = object()
dtype = torch.float32
model = type(
"MockModel",
(),
{"is_multilingual": True, "num_languages": None, "device": torch.device("cpu")},
)()
_seek = 0
def __init__(self, seq=None):
super().__init__(self.model, initial_prompt="")
self.seq = OnDemand(seq or ())
self.result = []
self.latest = torch.zeros((0,))
for i in range(len(self.seq)):
self._seek = i
self.frame_offset = max(0, i + 1 - CHUNK_LENGTH)
res = self.initial_prompt_tokens
assert res[0] == self.seq.prev
self.result.append(res[1:])
if seq is None:
print(res)
def detect_language(self, mel=None):
self.result.append([self.sample, mel])
return self.seq[self._seek]
def get_tokenizer(self, multilingual, language, **kw):
return MockTokenizer(language, **{"multilingual": multilingual, **kw})
@property
def rle(self):
res = []
for i, *j in self.result:
if i is self.sample:
res.append(0)
else:
res[-1] += 1
return res
def test_language():
res = TranscriberTest([0, 0, 1, 0, 0, 0, 0, 0, 0]).rle
assert res == [1, 2, 1, 1, 2, 4, 8, 11, 2]