whisper/tests/test_timing.py
Jong Wook Kim 500d0fe966
word-level timestamps in transcribe() (#869)
* word-level timestamps in `transcribe()`

* moving to `timing.py`

* numba implementation for dtw, replacing dtw-python

* triton implementation for dtw

* add test for dtw implementations

* triton implementation of median_filter

* a simple word-level timestamps test

* add scipy as dev dependency

* installs an older version of Triton if CUDA < 11.4

* fix broken merge

* loosen nvcc version match regex

* find_alignment() function

* miscellaneous improvements

* skip median filtering when the input is too small

* Expose punctuation options in cli and transcribe() (#973)

* fix merge error

* fix merge error 2

* annotating that word_timestamps is experimental

---------

Co-authored-by: ryanheise <ryan@ryanheise.com>
2023-03-06 14:00:49 -08:00

88 lines
2.2 KiB
Python

import pytest
import numpy as np
import scipy.ndimage
import torch
from whisper.timing import dtw_cpu, dtw_cuda, median_filter
sizes = [
(10, 20), (32, 16), (123, 1500), (234, 189),
]
shapes = [
(10,), (1, 15), (4, 5, 345), (6, 12, 240, 512),
]
@pytest.mark.parametrize("N, M", sizes)
def test_dtw(N: int, M: int):
steps = np.concatenate([np.zeros(N - 1), np.ones(M - 1)])
np.random.shuffle(steps)
x = np.random.random((N, M)).astype(np.float32)
i, j, k = 0, 0, 0
trace = []
while True:
x[i, j] -= 1
trace.append((i, j))
if k == len(steps):
break
if k + 1 < len(steps) and steps[k] != steps[k + 1]:
i += 1
j += 1
k += 2
continue
if steps[k] == 0:
i += 1
if steps[k] == 1:
j += 1
k += 1
trace = np.array(trace).T
dtw_trace = dtw_cpu(x)
assert np.allclose(trace, dtw_trace)
@pytest.mark.requires_cuda
@pytest.mark.parametrize("N, M", sizes)
def test_dtw_cuda_equivalence(N: int, M: int):
x_numpy = np.random.randn(N, M).astype(np.float32)
x_cuda = torch.from_numpy(x_numpy).cuda()
trace_cpu = dtw_cpu(x_numpy)
trace_cuda = dtw_cuda(x_cuda)
assert np.allclose(trace_cpu, trace_cuda)
@pytest.mark.parametrize("shape", shapes)
def test_median_filter(shape):
x = torch.randn(*shape)
for filter_width in [3, 5, 7, 13]:
filtered = median_filter(x, filter_width)
# using np.pad to reflect-pad, because Scipy's behavior is different near the edges.
pad_width = filter_width // 2
padded_x = np.pad(x, [(0, 0)] * (x.ndim - 1) + [(pad_width, pad_width)], mode="reflect")
scipy_filtered = scipy.ndimage.median_filter(padded_x, [1] * (x.ndim - 1) + [filter_width])
scipy_filtered = scipy_filtered[..., pad_width:-pad_width]
assert np.allclose(filtered, scipy_filtered)
@pytest.mark.requires_cuda
@pytest.mark.parametrize("shape", shapes)
def test_median_filter_equivalence(shape):
x = torch.randn(*shape)
for filter_width in [3, 5, 7, 13]:
filtered_cpu = median_filter(x, filter_width)
filtered_gpu = median_filter(x.cuda(), filter_width).cpu()
assert np.allclose(filtered_cpu, filtered_gpu)