2016-12-27 08:10:47 -08:00

110 lines
2.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- An Agda example file
module test where
open import Coinduction
open import Data.Bool
open import {- pointless comment between import and module name -} Data.Char
open import Data.Nat
open import Data.Nat.Properties
open import Data.String
open import Data.List hiding ([_])
open import Data.Vec hiding ([_])
open import Relation.Nullary.Core
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans; inspect; [_])
renaming (setoid to setiod)
open SemiringSolver
{- this is a {- nested -} comment -}
postulate pierce : {A B : Set} ((A B) A) A
instance
someBool : Bool
someBool = true
-- Factorial
_! :
0 ! = 1
(suc n) ! = (suc n) * n !
-- The binomial coefficient
_choose_ :
_ choose 0 = 1
0 choose _ = 0
(suc n) choose (suc m) = (n choose m) + (n choose (suc m)) -- Pascal's rule
choose-too-many : n m n m n choose (suc m) 0
choose-too-many .0 m z≤n = refl
choose-too-many (suc n) (suc m) (s≤s le) with n choose (suc m) | choose-too-many n m le | n choose (suc (suc m)) | choose-too-many n (suc m) (≤-step le)
... | .0 | refl | .0 | refl = refl
_++'_ : {a n m} {A : Set a} Vec A n Vec A m Vec A (m + n)
_++'_ {_} {n} {m} v₁ v₂ rewrite solve 2 (λ a b b :+ a := a :+ b) refl n m = v₁ Data.Vec.++ v₂
++'-test : (1 2 3 []) ++' (4 5 []) (1 2 3 4 5 [])
++'-test = refl
data Co : Set where
co0 : Co
cosuc : Co Co
nanana : Co
nanana = let two = cosuc ( (cosuc ( co0))) in cosuc two
abstract
data VacuumCleaner : Set where
Roomba : VacuumCleaner
pointlessLemmaAboutBoolFunctions : (f : Bool Bool) f (f (f true)) f true
pointlessLemmaAboutBoolFunctions f with f true | inspect f true
... | true | [ eq₁ ] = trans (cong f eq₁) eq₁
... | false | [ eq₁ ] with f false | inspect f false
... | true | _ = eq₁
... | false | [ eq₂ ] = eq₂
mutual
isEven : Bool
isEven 0 = true
isEven (suc n) = not (isOdd n)
isOdd : Bool
isOdd 0 = false
isOdd (suc n) = not (isEven n)
foo : String
foo = "Hello World!"
nl : Char
nl = '\n'
private
intersperseString : Char List String String
intersperseString c [] = ""
intersperseString c (x xs) = Data.List.foldl (λ a b a Data.String.++ Data.String.fromList (c []) Data.String.++ b) x xs
baz : String
baz = intersperseString nl (Data.List.replicate 5 foo)
postulate
Float : Set
{-# BUILTIN FLOAT Float #-}
pi : Float
pi = 3.141593
-- Astronomical unit
au : Float
au = 1.496e11 -- m
plusFloat : Float Float Float
plusFloat a b = {! !}
record Subset (A : Set) (P : A Set) : Set where
constructor _#_
field
elem : A
.proof : P elem