2023-08-22 21:38:22 +08:00

114 lines
3.0 KiB
Go

// Starting with version 1.18, Go has added support for
// _generics_, also known as _type parameters_.
package main
import "fmt"
type MyInt16 int16
type MyInt int
func (m MyInt16) String() string {
return fmt.Sprintf("{MyInt16: %d}", m)
}
func (m MyInt) String() string {
return fmt.Sprintf("{MyInt: %d}", m)
}
// `~` the underlying type of T must be itself, and T cannot be an interface.
type Number interface {
int | ~int16
}
// An interface representing all types with underlying type int that implement the String method.
type IntString interface {
~int16
String() string
}
func SumNumber[T Number](a, b T) T {
return a + b
}
func SumIntString[T IntString](a, b T) (T, string) {
return a + b, a.String() + ", " + b.String()
}
// As an example of a generic function, `MapKeys` takes
// a map of any type and returns a slice of its keys.
// This function has two type parameters - `K` and `V`;
// `K` has the `comparable` _constraint_, meaning that
// we can compare values of this type with the `==` and
// `!=` operators. This is required for map keys in Go.
// `V` has the `any` constraint, meaning that it's not
// restricted in any way (`any` is an alias for `interface{}`).
func MapKeys[K comparable, V any](m map[K]V) []K {
r := make([]K, 0, len(m))
for k := range m {
r = append(r, k)
}
return r
}
// As an example of a generic type, `List` is a
// singly-linked list with values of any type.
type List[T any] struct {
head, tail *element[T]
}
type element[T any] struct {
next *element[T]
val T
}
// We can define methods on generic types just like we
// do on regular types, but we have to keep the type
// parameters in place. The type is `List[T]`, not `List`.
func (lst *List[T]) Push(v T) {
if lst.tail == nil {
lst.head = &element[T]{val: v}
lst.tail = lst.head
} else {
lst.tail.next = &element[T]{val: v}
lst.tail = lst.tail.next
}
}
func (lst *List[T]) GetAll() []T {
var elems []T
for e := lst.head; e != nil; e = e.next {
elems = append(elems, e.val)
}
return elems
}
func main() {
var m = map[int]string{1: "2", 2: "4", 4: "8"}
// When invoking generic functions, we can often rely
// on _type inference_. Note that we don't have to
// specify the types for `K` and `V` when
// calling `MapKeys` - the compiler infers them
// automatically.
fmt.Println("keys:", MapKeys(m))
// ... though we could also specify them explicitly.
_ = MapKeys[int, string](m)
lst := List[int]{}
lst.Push(10)
lst.Push(13)
lst.Push(23)
fmt.Println("list:", lst.GetAll())
// We can use `MyInt16` as the parameter of the function `SumNumber`, because its underlying type is int16.
fmt.Println(SumNumber(MyInt16(1), MyInt16(2)))
fmt.Println(SumNumber(1, 2))
// We can't use `MyInt` as the parameter of the function `SumInString`, because underlying type of `MyInt` is int not int16.
// also int16 does not implement `IntString` (missing method String).
result, str := SumIntString(MyInt16(1), MyInt16(2))
fmt.Printf("result: %d, output: %s\n", result, str)
}