Hana 9e216da9ef go.mod: add go.mod and move pygments to third_party
After go1.16, go will use module mode by default,
even when the repository is checked out under GOPATH
or in a one-off directory. Add go.mod, go.sum to keep
this repo buildable without opting out of the module
mode.

> go mod init github.com/mmcgrana/gobyexample
> go mod tidy
> go mod vendor

In module mode, the 'vendor' directory is special
and its contents will be actively maintained by the
go command. pygments aren't the dependency the go will
know about, so it will delete the contents from vendor
directory. Move it to `third_party` directory now.

And, vendor the blackfriday package.

Note: the tutorial contents are not affected by the
change in go1.16 because all the examples in this
tutorial ask users to run the go command with the
explicit list of files to be compiled (e.g.
`go run hello-world.go` or `go build command-line-arguments.go`).
When the source list is provided, the go command does
not have to compute the build list and whether it's
running in GOPATH mode or module mode becomes irrelevant.
2021-02-15 16:45:26 -05:00

448 lines
15 KiB
Plaintext

(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * Typeclass-based relations, tactics and standard instances
This is the basic theory needed to formalize morphisms and setoids.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
(* $Id: RelationClasses.v 14641 2011-11-06 11:59:10Z herbelin $ *)
Require Export Coq.Classes.Init.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Relations.Relation_Definitions.
(** We allow to unfold the [relation] definition while doing morphism search. *)
Notation inverse R := (flip (R:relation _) : relation _).
Definition complement {A} (R : relation A) : relation A := fun x y => R x y -> False.
(** Opaque for proof-search. *)
Typeclasses Opaque complement.
(** These are convertible. *)
Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R).
Proof. reflexivity. Qed.
(** We rebind relations in separate classes to be able to overload each proof. *)
Set Implicit Arguments.
Unset Strict Implicit.
Class Reflexive {A} (R : relation A) :=
reflexivity : forall x, R x x.
Class Irreflexive {A} (R : relation A) :=
irreflexivity : Reflexive (complement R).
Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances.
Class Symmetric {A} (R : relation A) :=
symmetry : forall x y, R x y -> R y x.
Class Asymmetric {A} (R : relation A) :=
asymmetry : forall x y, R x y -> R y x -> False.
Class Transitive {A} (R : relation A) :=
transitivity : forall x y z, R x y -> R y z -> R x z.
Hint Resolve @irreflexivity : ord.
Unset Implicit Arguments.
(** A HintDb for relations. *)
Ltac solve_relation :=
match goal with
| [ |- ?R ?x ?x ] => reflexivity
| [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H
end.
Hint Extern 4 => solve_relation : relations.
(** We can already dualize all these properties. *)
Generalizable Variables A B C D R S T U l eqA eqB eqC eqD.
Lemma flip_Reflexive `{Reflexive A R} : Reflexive (flip R).
Proof. tauto. Qed.
Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances.
Program Definition flip_Irreflexive `(Irreflexive A R) : Irreflexive (flip R) :=
irreflexivity (R:=R).
Program Definition flip_Symmetric `(Symmetric A R) : Symmetric (flip R) :=
fun x y H => symmetry (R:=R) H.
Program Definition flip_Asymmetric `(Asymmetric A R) : Asymmetric (flip R) :=
fun x y H H' => asymmetry (R:=R) H H'.
Program Definition flip_Transitive `(Transitive A R) : Transitive (flip R) :=
fun x y z H H' => transitivity (R:=R) H' H.
Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances.
Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances.
Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances.
Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances.
Definition Reflexive_complement_Irreflexive `(Reflexive A (R : relation A))
: Irreflexive (complement R).
Proof. firstorder. Qed.
Definition complement_Symmetric `(Symmetric A (R : relation A)) : Symmetric (complement R).
Proof. firstorder. Qed.
Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances.
Hint Extern 3 (Irreflexive (complement _)) => class_apply Reflexive_complement_Irreflexive : typeclass_instances.
(** * Standard instances. *)
Ltac reduce_hyp H :=
match type of H with
| context [ _ <-> _ ] => fail 1
| _ => red in H ; try reduce_hyp H
end.
Ltac reduce_goal :=
match goal with
| [ |- _ <-> _ ] => fail 1
| _ => red ; intros ; try reduce_goal
end.
Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
Ltac reduce := reduce_goal.
Tactic Notation "apply" "*" constr(t) :=
first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
Ltac simpl_relation :=
unfold flip, impl, arrow ; try reduce ; program_simpl ;
try ( solve [ intuition ]).
Local Obligation Tactic := simpl_relation.
(** Logical implication. *)
Program Instance impl_Reflexive : Reflexive impl.
Program Instance impl_Transitive : Transitive impl.
(** Logical equivalence. *)
Program Instance iff_Reflexive : Reflexive iff.
Program Instance iff_Symmetric : Symmetric iff.
Program Instance iff_Transitive : Transitive iff.
(** Leibniz equality. *)
Instance eq_Reflexive {A} : Reflexive (@eq A) := @eq_refl A.
Instance eq_Symmetric {A} : Symmetric (@eq A) := @eq_sym A.
Instance eq_Transitive {A} : Transitive (@eq A) := @eq_trans A.
(** Various combinations of reflexivity, symmetry and transitivity. *)
(** A [PreOrder] is both Reflexive and Transitive. *)
Class PreOrder {A} (R : relation A) : Prop := {
PreOrder_Reflexive :> Reflexive R ;
PreOrder_Transitive :> Transitive R }.
(** A partial equivalence relation is Symmetric and Transitive. *)
Class PER {A} (R : relation A) : Prop := {
PER_Symmetric :> Symmetric R ;
PER_Transitive :> Transitive R }.
(** Equivalence relations. *)
Class Equivalence {A} (R : relation A) : Prop := {
Equivalence_Reflexive :> Reflexive R ;
Equivalence_Symmetric :> Symmetric R ;
Equivalence_Transitive :> Transitive R }.
(** An Equivalence is a PER plus reflexivity. *)
Instance Equivalence_PER `(Equivalence A R) : PER R | 10 :=
{ PER_Symmetric := Equivalence_Symmetric ;
PER_Transitive := Equivalence_Transitive }.
(** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *)
Class Antisymmetric A eqA `{equ : Equivalence A eqA} (R : relation A) :=
antisymmetry : forall {x y}, R x y -> R y x -> eqA x y.
Program Definition flip_antiSymmetric `(Antisymmetric A eqA R) :
Antisymmetric A eqA (flip R).
Proof. firstorder. Qed.
(** Leibinz equality [eq] is an equivalence relation.
The instance has low priority as it is always applicable
if only the type is constrained. *)
Program Instance eq_equivalence : Equivalence (@eq A) | 10.
(** Logical equivalence [iff] is an equivalence relation. *)
Program Instance iff_equivalence : Equivalence iff.
(** We now develop a generalization of results on relations for arbitrary predicates.
The resulting theory can be applied to homogeneous binary relations but also to
arbitrary n-ary predicates. *)
Local Open Scope list_scope.
(* Notation " [ ] " := nil : list_scope. *)
(* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *)
(** A compact representation of non-dependent arities, with the codomain singled-out. *)
Fixpoint arrows (l : list Type) (r : Type) : Type :=
match l with
| nil => r
| A :: l' => A -> arrows l' r
end.
(** We can define abbreviations for operation and relation types based on [arrows]. *)
Definition unary_operation A := arrows (A::nil) A.
Definition binary_operation A := arrows (A::A::nil) A.
Definition ternary_operation A := arrows (A::A::A::nil) A.
(** We define n-ary [predicate]s as functions into [Prop]. *)
Notation predicate l := (arrows l Prop).
(** Unary predicates, or sets. *)
Definition unary_predicate A := predicate (A::nil).
(** Homogeneous binary relations, equivalent to [relation A]. *)
Definition binary_relation A := predicate (A::A::nil).
(** We can close a predicate by universal or existential quantification. *)
Fixpoint predicate_all (l : list Type) : predicate l -> Prop :=
match l with
| nil => fun f => f
| A :: tl => fun f => forall x : A, predicate_all tl (f x)
end.
Fixpoint predicate_exists (l : list Type) : predicate l -> Prop :=
match l with
| nil => fun f => f
| A :: tl => fun f => exists x : A, predicate_exists tl (f x)
end.
(** Pointwise extension of a binary operation on [T] to a binary operation
on functions whose codomain is [T].
For an operator on [Prop] this lifts the operator to a binary operation. *)
Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
(l : list Type) : binary_operation (arrows l T) :=
match l with
| nil => fun R R' => op R R'
| A :: tl => fun R R' =>
fun x => pointwise_extension op tl (R x) (R' x)
end.
(** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *)
Fixpoint pointwise_lifting (op : binary_relation Prop) (l : list Type) : binary_relation (predicate l) :=
match l with
| nil => fun R R' => op R R'
| A :: tl => fun R R' =>
forall x, pointwise_lifting op tl (R x) (R' x)
end.
(** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *)
Definition predicate_equivalence {l : list Type} : binary_relation (predicate l) :=
pointwise_lifting iff l.
(** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *)
Definition predicate_implication {l : list Type} :=
pointwise_lifting impl l.
(** Notations for pointwise equivalence and implication of predicates. *)
Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
Infix "-∙>" := predicate_implication (at level 70, right associativity) : predicate_scope.
Open Local Scope predicate_scope.
(** The pointwise liftings of conjunction and disjunctions.
Note that these are [binary_operation]s, building new relations out of old ones. *)
Definition predicate_intersection := pointwise_extension and.
Definition predicate_union := pointwise_extension or.
Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
(** The always [True] and always [False] predicates. *)
Fixpoint true_predicate {l : list Type} : predicate l :=
match l with
| nil => True
| A :: tl => fun _ => @true_predicate tl
end.
Fixpoint false_predicate {l : list Type} : predicate l :=
match l with
| nil => False
| A :: tl => fun _ => @false_predicate tl
end.
Notation "∙⊤∙" := true_predicate : predicate_scope.
Notation "∙⊥∙" := false_predicate : predicate_scope.
(** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *)
Program Instance predicate_equivalence_equivalence : Equivalence (@predicate_equivalence l).
Next Obligation.
induction l ; firstorder.
Qed.
Next Obligation.
induction l ; firstorder.
Qed.
Next Obligation.
fold pointwise_lifting.
induction l. firstorder.
intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)).
firstorder.
Qed.
Program Instance predicate_implication_preorder :
PreOrder (@predicate_implication l).
Next Obligation.
induction l ; firstorder.
Qed.
Next Obligation.
induction l. firstorder.
unfold predicate_implication in *. simpl in *.
intro. pose (IHl (x x0) (y x0) (z x0)). firstorder.
Qed.
(** We define the various operations which define the algebra on binary relations,
from the general ones. *)
Definition relation_equivalence {A : Type} : relation (relation A) :=
@predicate_equivalence (_::_::nil).
Class subrelation {A:Type} (R R' : relation A) : Prop :=
is_subrelation : @predicate_implication (A::A::nil) R R'.
Implicit Arguments subrelation [[A]].
Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A :=
@predicate_intersection (A::A::nil) R R'.
Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A :=
@predicate_union (A::A::nil) R R'.
(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
Set Automatic Introduction.
Instance relation_equivalence_equivalence (A : Type) :
Equivalence (@relation_equivalence A).
Proof. exact (@predicate_equivalence_equivalence (A::A::nil)). Qed.
Instance relation_implication_preorder A : PreOrder (@subrelation A).
Proof. exact (@predicate_implication_preorder (A::A::nil)). Qed.
(** *** Partial Order.
A partial order is a preorder which is additionally antisymmetric.
We give an equivalent definition, up-to an equivalence relation
on the carrier. *)
Class PartialOrder {A} eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)).
(** The equivalence proof is sufficient for proving that [R] must be a morphism
for equivalence (see Morphisms).
It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *)
Instance partial_order_antisym `(PartialOrder A eqA R) : ! Antisymmetric A eqA R.
Proof with auto.
reduce_goal.
pose proof partial_order_equivalence as poe. do 3 red in poe.
apply <- poe. firstorder.
Qed.
(** The partial order defined by subrelation and relation equivalence. *)
Program Instance subrelation_partial_order :
! PartialOrder (relation A) relation_equivalence subrelation.
Next Obligation.
Proof.
unfold relation_equivalence in *. firstorder.
Qed.
Typeclasses Opaque arrows predicate_implication predicate_equivalence
relation_equivalence pointwise_lifting.
(** Rewrite relation on a given support: declares a relation as a rewrite
relation for use by the generalized rewriting tactic.
It helps choosing if a rewrite should be handled
by the generalized or the regular rewriting tactic using leibniz equality.
Users can declare an [RewriteRelation A RA] anywhere to declare default
relations. This is also done automatically by the [Declare Relation A RA]
commands. *)
Class RewriteRelation {A : Type} (RA : relation A).
Instance: RewriteRelation impl.
Instance: RewriteRelation iff.
Instance: RewriteRelation (@relation_equivalence A).
(** Any [Equivalence] declared in the context is automatically considered
a rewrite relation. *)
Instance equivalence_rewrite_relation `(Equivalence A eqA) : RewriteRelation eqA.
(** Strict Order *)
Class StrictOrder {A : Type} (R : relation A) := {
StrictOrder_Irreflexive :> Irreflexive R ;
StrictOrder_Transitive :> Transitive R
}.
Instance StrictOrder_Asymmetric `(StrictOrder A R) : Asymmetric R.
Proof. firstorder. Qed.
(** Inversing a [StrictOrder] gives another [StrictOrder] *)
Lemma StrictOrder_inverse `(StrictOrder A R) : StrictOrder (inverse R).
Proof. firstorder. Qed.
(** Same for [PartialOrder]. *)
Lemma PreOrder_inverse `(PreOrder A R) : PreOrder (inverse R).
Proof. firstorder. Qed.
Hint Extern 3 (StrictOrder (inverse _)) => class_apply StrictOrder_inverse : typeclass_instances.
Hint Extern 3 (PreOrder (inverse _)) => class_apply PreOrder_inverse : typeclass_instances.
Lemma PartialOrder_inverse `(PartialOrder A eqA R) : PartialOrder eqA (inverse R).
Proof. firstorder. Qed.
Hint Extern 3 (PartialOrder (inverse _)) => class_apply PartialOrder_inverse : typeclass_instances.