Hana 9e216da9ef go.mod: add go.mod and move pygments to third_party
After go1.16, go will use module mode by default,
even when the repository is checked out under GOPATH
or in a one-off directory. Add go.mod, go.sum to keep
this repo buildable without opting out of the module
mode.

> go mod init github.com/mmcgrana/gobyexample
> go mod tidy
> go mod vendor

In module mode, the 'vendor' directory is special
and its contents will be actively maintained by the
go command. pygments aren't the dependency the go will
know about, so it will delete the contents from vendor
directory. Move it to `third_party` directory now.

And, vendor the blackfriday package.

Note: the tutorial contents are not affected by the
change in go1.16 because all the examples in this
tutorial ask users to run the go command with the
explicit list of files to be compiled (e.g.
`go run hello-world.go` or `go build command-line-arguments.go`).
When the source list is provided, the go command does
not have to compute the build list and whether it's
running in GOPATH mode or module mode becomes irrelevant.
2021-02-15 16:45:26 -05:00

2081 lines
46 KiB
C

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "codegen.h"
#include "symboltable.h"
#include "stringbuffer.h"
extern void yyerror(char* msg);
static stringBuffer* staticVariableBuffer;
static stringBuffer* classInitBuffer;
static stringBuffer* currentMethodBuffer;
static stringBuffer* finishedMethodsBuffer;
static stringBuffer* mainBuffer;
static int currentMethodBufferIndex;
static int currentMethodStackSize;
static int currentMethodStackSizeMax;
static int currentMethodNumberOfLocals;
static int classInitBufferIndex;
static int classInitStackSize;
static int classInitStackSizeMax;
static int labelCounter = 0;
static int global = 1;
char tempString[MAX_LENGTH_OF_COMMAND];
extern char* className; /* from minako-syntax.y */
/* forward declarations */
static void increaseStackby(int stackdiff);
char convertType(int type);
void codegenInit() {
staticVariableBuffer = newStringBuffer();
classInitBuffer = newStringBuffer();
currentMethodBuffer = 0;
finishedMethodsBuffer = newStringBuffer();
mainBuffer = newStringBuffer();
stringBufferAppend(mainBuffer, "; ------- Header --------------------------------------------");
sprintf(tempString, ".class public synchronized %s", className);
stringBufferAppend(mainBuffer, tempString);
stringBufferAppend(mainBuffer, ".super java/lang/Object");
stringBufferAppend(mainBuffer, "; -----------------------------------------------------------");
stringBufferAppend(mainBuffer, "");
stringBufferAppend(finishedMethodsBuffer, "; ------- Constructor ---------------------------------------");
stringBufferAppend(finishedMethodsBuffer, ".method public <init>()V");
stringBufferAppend(finishedMethodsBuffer, "\t.limit stack 1");
stringBufferAppend(finishedMethodsBuffer, "\t.limit locals 1");
stringBufferAppend(finishedMethodsBuffer, "\taload_0");
stringBufferAppend(finishedMethodsBuffer, "\tinvokenonvirtual java/lang/Object/<init>()V");
stringBufferAppend(finishedMethodsBuffer, "\treturn");
stringBufferAppend(finishedMethodsBuffer, ".end method");
stringBufferAppend(finishedMethodsBuffer, "; -----------------------------------------------------------");
stringBufferAppend(finishedMethodsBuffer, "");
stringBufferAppend(staticVariableBuffer, "; ------- Class Variables -----------------------------------");
stringBufferAppend(classInitBuffer, "; ------- Class Initializer ---------------------------------");
stringBufferAppend(classInitBuffer, ".method static <clinit>()V");
classInitBufferIndex = classInitBuffer->numberOfNextElement;
stringBufferAppend(classInitBuffer, "\t.limit locals 0");
}
void codegenAppendCommand(char* cmd, int stackdiff) {
char tempString[MAX_LENGTH_OF_COMMAND];
sprintf(tempString, "\t%s", cmd);
if (global) stringBufferAppend(classInitBuffer, tempString);
else stringBufferAppend(currentMethodBuffer, tempString);
increaseStackby(stackdiff);
}
void codegenInsertCommand(int address, char* cmd, int stackdiff) {
char tempString[MAX_LENGTH_OF_COMMAND];
sprintf(tempString, "\t%s", cmd);
if (global) stringBufferInsert(classInitBuffer, address, tempString);
else stringBufferInsert(currentMethodBuffer, address, tempString);
increaseStackby(stackdiff);
}
void codegenAppendLabel(int label) {
char tempString[MAX_LENGTH_OF_COMMAND];
sprintf(tempString, "Label%d:", label);
if (global) stringBufferAppend(classInitBuffer, tempString);
else stringBufferAppend(currentMethodBuffer, tempString);
}
void codegenAddVariable(char* name, int type) {
/*fprintf(stderr, "add variable %s(%d) global=%d ", name, convertType(type), global);*/
if (global) {
if (type == TYPE_INT) sprintf(tempString, ".field static %s %c", name, 'I');
else if (type == TYPE_FLOAT) sprintf(tempString, ".field static %s %c", name, 'F');
else if (type == TYPE_BOOLEAN) sprintf(tempString, ".field static %s %c", name, 'Z');
else yyerror("compiler-intern error in codegenAddGlobalVariable().\n");
stringBufferAppend(staticVariableBuffer, tempString);
}
else {
currentMethodNumberOfLocals++;
}
}
int codegenGetNextLabel() {
return labelCounter++;
}
int codegenGetCurrentAddress() {
if (global) return classInitBuffer->numberOfNextElement;
else return currentMethodBuffer->numberOfNextElement;
}
void codegenEnterFunction(symtabEntry* entry) {
currentMethodBuffer = newStringBuffer();
currentMethodStackSize = 0;
currentMethodStackSizeMax = 0;
labelCounter = 1;
global = 0;
if (strcmp(entry->name, "main") == 0) {
if (entry->idtype != TYPE_VOID) yyerror("main has to be void.\n");
currentMethodNumberOfLocals = 1;
symtabInsert(strdup("#main-param#"), TYPE_VOID, CLASS_FUNC);
stringBufferAppend(currentMethodBuffer, "; ------- Methode ---- void main() --------------------------");
stringBufferAppend(currentMethodBuffer, ".method public static main([Ljava/lang/String;)V");
}
else {
int i;
currentMethodNumberOfLocals = entry->paramIndex;
stringBufferAppend(currentMethodBuffer, "; ------- Methode -------------------------------------------");
sprintf(tempString, ".method public static %s(", entry->name);
for (i=entry->paramIndex-1; i>=0; i--) {
int type = entry->params[i]->idtype;
tempString[strlen(tempString)+1] = 0;
tempString[strlen(tempString)] = convertType(type);
}
tempString[strlen(tempString)+2] = 0;
tempString[strlen(tempString)+1] = convertType(entry->idtype);
tempString[strlen(tempString)] = ')';
stringBufferAppend(currentMethodBuffer, tempString);
}
currentMethodBufferIndex = currentMethodBuffer->numberOfNextElement;
}
void codegenLeaveFunction() {
global = 1;
sprintf(tempString, "\t.limit locals %d", currentMethodNumberOfLocals);
stringBufferInsert(currentMethodBuffer, currentMethodBufferIndex, tempString);
sprintf(tempString, "\t.limit stack %d", currentMethodStackSizeMax);
stringBufferInsert(currentMethodBuffer, currentMethodBufferIndex, tempString);
stringBufferAppend(currentMethodBuffer, "\treturn");
stringBufferAppend(currentMethodBuffer, ".end method");
stringBufferAppend(currentMethodBuffer, "; -----------------------------------------------------------");
stringBufferAppend(currentMethodBuffer, "");
stringBufferConcatenate(finishedMethodsBuffer, currentMethodBuffer);
}
void codegenFinishCode() {
stringBufferAppend(staticVariableBuffer, "; -----------------------------------------------------------");
stringBufferAppend(staticVariableBuffer, "");
sprintf(tempString, "\t.limit stack %d", classInitStackSizeMax);
stringBufferInsert(classInitBuffer, classInitBufferIndex, tempString);
stringBufferAppend(classInitBuffer, "\treturn");
stringBufferAppend(classInitBuffer, ".end method");
stringBufferAppend(classInitBuffer, "; -----------------------------------------------------------");
stringBufferConcatenate(mainBuffer, staticVariableBuffer);
stringBufferConcatenate(mainBuffer, finishedMethodsBuffer);
stringBufferConcatenate(mainBuffer, classInitBuffer);
stringBufferPrint(mainBuffer);
}
static void increaseStackby(int stackdiff) {
if (global) {
classInitStackSize += stackdiff;
if (classInitStackSize > classInitStackSizeMax) classInitStackSizeMax = classInitStackSize;
}
else {
currentMethodStackSize += stackdiff;
if (currentMethodStackSize > currentMethodStackSizeMax) currentMethodStackSizeMax = currentMethodStackSize;
}
}
char convertType(int type) {
switch(type) {
case TYPE_VOID: return 'V';
case TYPE_INT: return 'I';
case TYPE_FLOAT: return 'F';
case TYPE_BOOLEAN: return 'Z';
default : yyerror("compiler-intern error in convertType().\n");
}
return 0; /* to avoid compiler-warning */
}
//#include <stdlib.h>
//#include <stdio.h>
int main() {
int a = 12, b = 44;
while (a != b) {
if (a > b)
a -= b;
else
b -= a;
}
printf("%d\n%d", a, 0X0);\
}
/**********************************************************************
array.c -
$Author: murphy $
$Date: 2005-11-05 04:33:55 +0100 (Sa, 05 Nov 2005) $
created at: Fri Aug 6 09:46:12 JST 1993
Copyright (C) 1993-2003 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby.h"
#include "util.h"
#include "st.h"
#include "node.h"
VALUE rb_cArray, rb_cValues;
static ID id_cmp;
#define ARY_DEFAULT_SIZE 16
void
rb_mem_clear(mem, size)
register VALUE *mem;
register long size;
{
while (size--) {
*mem++ = Qnil;
}
}
static inline void
memfill(mem, size, val)
register VALUE *mem;
register long size;
register VALUE val;
{
while (size--) {
*mem++ = val;
}
}
#define ARY_TMPLOCK FL_USER1
static inline void
rb_ary_modify_check(ary)
VALUE ary;
{
if (OBJ_FROZEN(ary)) rb_error_frozen("array");
if (FL_TEST(ary, ARY_TMPLOCK))
rb_raise(rb_eRuntimeError, "can't modify array during iteration");
if (!OBJ_TAINTED(ary) && rb_safe_level() >= 4)
rb_raise(rb_eSecurityError, "Insecure: can't modify array");
}
static void
rb_ary_modify(ary)
VALUE ary;
{
VALUE *ptr;
rb_ary_modify_check(ary);
if (FL_TEST(ary, ELTS_SHARED)) {
ptr = ALLOC_N(VALUE, RARRAY(ary)->len);
FL_UNSET(ary, ELTS_SHARED);
RARRAY(ary)->aux.capa = RARRAY(ary)->len;
MEMCPY(ptr, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
RARRAY(ary)->ptr = ptr;
}
}
VALUE
rb_ary_freeze(ary)
VALUE ary;
{
return rb_obj_freeze(ary);
}
/*
* call-seq:
* array.frozen? -> true or false
*
* Return <code>true</code> if this array is frozen (or temporarily frozen
* while being sorted).
*/
static VALUE
rb_ary_frozen_p(ary)
VALUE ary;
{
if (OBJ_FROZEN(ary)) return Qtrue;
if (FL_TEST(ary, ARY_TMPLOCK)) return Qtrue;
return Qfalse;
}
static VALUE ary_alloc(VALUE);
static VALUE
ary_alloc(klass)
VALUE klass;
{
NEWOBJ(ary, struct RArray);
OBJSETUP(ary, klass, T_ARRAY);
ary->len = 0;
ary->ptr = 0;
ary->aux.capa = 0;
return (VALUE)ary;
}
static VALUE
ary_new(klass, len)
VALUE klass;
long len;
{
VALUE ary;
if (len < 0) {
rb_raise(rb_eArgError, "negative array size (or size too big)");
}
if (len > 0 && len * sizeof(VALUE) <= len) {
rb_raise(rb_eArgError, "array size too big");
}
if (len == 0) len++;
ary = ary_alloc(klass);
RARRAY(ary)->ptr = ALLOC_N(VALUE, len);
RARRAY(ary)->aux.capa = len;
return ary;
}
VALUE
rb_ary_new2(len)
long len;
{
return ary_new(rb_cArray, len);
}
VALUE
rb_ary_new()
{
return rb_ary_new2(ARY_DEFAULT_SIZE);
}
#ifdef HAVE_STDARG_PROTOTYPES
#include <stdarg.h>
#define va_init_list(a,b) va_start(a,b)
#else
#include <varargs.h>
#define va_init_list(a,b) va_start(a)
#endif
VALUE
#ifdef HAVE_STDARG_PROTOTYPES
rb_ary_new3(long n, ...)
#else
rb_ary_new3(n, va_alist)
long n;
va_dcl
#endif
{
va_list ar;
VALUE ary;
long i;
ary = rb_ary_new2(n);
va_init_list(ar, n);
for (i=0; i<n; i++) {
RARRAY(ary)->ptr[i] = va_arg(ar, VALUE);
}
va_end(ar);
RARRAY(ary)->len = n;
return ary;
}
VALUE
rb_ary_new4(n, elts)
long n;
const VALUE *elts;
{
VALUE ary;
ary = rb_ary_new2(n);
if (n > 0 && elts) {
MEMCPY(RARRAY(ary)->ptr, elts, VALUE, n);
}
RARRAY(ary)->len = n;
return ary;
}
VALUE
#ifdef HAVE_STDARG_PROTOTYPES
rb_values_new(long n, ...)
#else
rb_values_new(n, va_alist)
long n;
va_dcl
#endif
{
va_list ar;
VALUE val;
long i;
val = ary_new(rb_cValues, n);
va_init_list(ar, n);
for (i=0; i<n; i++) {
RARRAY(val)->ptr[i] = va_arg(ar, VALUE);
}
va_end(ar);
RARRAY(val)->len = n;
return val;
}
VALUE
rb_values_new2(n, elts)
long n;
const VALUE *elts;
{
VALUE val;
val = ary_new(rb_cValues, n);
if (n > 0 && elts) {
RARRAY(val)->len = n;
MEMCPY(RARRAY(val)->ptr, elts, VALUE, n);
}
return val;
}
static VALUE
ary_make_shared(ary)
VALUE ary;
{
if (!FL_TEST(ary, ELTS_SHARED)) {
NEWOBJ(shared, struct RArray);
OBJSETUP(shared, rb_cArray, T_ARRAY);
shared->len = RARRAY(ary)->len;
shared->ptr = RARRAY(ary)->ptr;
shared->aux.capa = RARRAY(ary)->aux.capa;
RARRAY(ary)->aux.shared = (VALUE)shared;
FL_SET(ary, ELTS_SHARED);
OBJ_FREEZE(shared);
return (VALUE)shared;
}
else {
return RARRAY(ary)->aux.shared;
}
}
static VALUE
ary_shared_array(klass, ary)
VALUE klass, ary;
{
VALUE val = ary_alloc(klass);
ary_make_shared(ary);
RARRAY(val)->ptr = RARRAY(ary)->ptr;
RARRAY(val)->len = RARRAY(ary)->len;
RARRAY(val)->aux.shared = RARRAY(ary)->aux.shared;
FL_SET(val, ELTS_SHARED);
return val;
}
VALUE
rb_values_from_ary(ary)
VALUE ary;
{
return ary_shared_array(rb_cValues, ary);
}
VALUE
rb_ary_from_values(val)
VALUE val;
{
return ary_shared_array(rb_cArray, val);
}
VALUE
rb_assoc_new(car, cdr)
VALUE car, cdr;
{
return rb_values_new(2, car, cdr);
}
static VALUE
to_ary(ary)
VALUE ary;
{
return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
}
static VALUE
to_a(ary)
VALUE ary;
{
return rb_convert_type(ary, T_ARRAY, "Array", "to_a");
}
VALUE
rb_check_array_type(ary)
VALUE ary;
{
return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
}
static VALUE rb_ary_replace _((VALUE, VALUE));
/*
* call-seq:
* Array.new(size=0, obj=nil)
* Array.new(array)
* Array.new(size) {|index| block }
*
* Returns a new array. In the first form, the new array is
* empty. In the second it is created with _size_ copies of _obj_
* (that is, _size_ references to the same
* _obj_). The third form creates a copy of the array
* passed as a parameter (the array is generated by calling
* to_ary on the parameter). In the last form, an array
* of the given size is created. Each element in this array is
* calculated by passing the element's index to the given block and
* storing the return value.
*
* Array.new
* Array.new(2)
* Array.new(5, "A")
*
* # only one copy of the object is created
* a = Array.new(2, Hash.new)
* a[0]['cat'] = 'feline'
* a
* a[1]['cat'] = 'Felix'
* a
*
* # here multiple copies are created
* a = Array.new(2) { Hash.new }
* a[0]['cat'] = 'feline'
* a
*
* squares = Array.new(5) {|i| i*i}
* squares
*
* copy = Array.new(squares)
*/
static VALUE
rb_ary_initialize(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long len;
VALUE size, val;
if (rb_scan_args(argc, argv, "02", &size, &val) == 0) {
RARRAY(ary)->len = 0;
if (rb_block_given_p()) {
rb_warning("given block not used");
}
return ary;
}
if (argc == 1 && !FIXNUM_P(size)) {
val = rb_check_array_type(size);
if (!NIL_P(val)) {
rb_ary_replace(ary, val);
return ary;
}
}
len = NUM2LONG(size);
if (len < 0) {
rb_raise(rb_eArgError, "negative array size");
}
if (len > 0 && len * (long)sizeof(VALUE) <= len) {
rb_raise(rb_eArgError, "array size too big");
}
rb_ary_modify(ary);
if (len > RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, len);
RARRAY(ary)->aux.capa = len;
}
if (rb_block_given_p()) {
long i;
if (argc == 2) {
rb_warn("block supersedes default value argument");
}
for (i=0; i<len; i++) {
rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
RARRAY(ary)->len = i + 1;
}
}
else {
memfill(RARRAY(ary)->ptr, len, val);
RARRAY(ary)->len = len;
}
return ary;
}
/*
* Returns a new array populated with the given objects.
*
* Array.[]( 1, 'a', /^A/ )
* Array[ 1, 'a', /^A/ ]
* [ 1, 'a', /^A/ ]
*/
static VALUE
rb_ary_s_create(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
VALUE ary = ary_alloc(klass);
if (argc > 0) {
RARRAY(ary)->ptr = ALLOC_N(VALUE, argc);
MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc);
}
RARRAY(ary)->len = RARRAY(ary)->aux.capa = argc;
return ary;
}
void
rb_ary_store(ary, idx, val)
VALUE ary;
long idx;
VALUE val;
{
if (idx < 0) {
idx += RARRAY(ary)->len;
if (idx < 0) {
rb_raise(rb_eIndexError, "index %ld out of array",
idx - RARRAY(ary)->len);
}
}
rb_ary_modify(ary);
if (idx >= RARRAY(ary)->aux.capa) {
long new_capa = RARRAY(ary)->aux.capa / 2;
if (new_capa < ARY_DEFAULT_SIZE) {
new_capa = ARY_DEFAULT_SIZE;
}
new_capa += idx;
if (new_capa * (long)sizeof(VALUE) <= new_capa) {
rb_raise(rb_eArgError, "index too big");
}
REALLOC_N(RARRAY(ary)->ptr, VALUE, new_capa);
RARRAY(ary)->aux.capa = new_capa;
}
if (idx > RARRAY(ary)->len) {
rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len,
idx-RARRAY(ary)->len + 1);
}
if (idx >= RARRAY(ary)->len) {
RARRAY(ary)->len = idx + 1;
}
RARRAY(ary)->ptr[idx] = val;
}
static VALUE
ary_shared_first(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE nv, result;
long n;
rb_scan_args(argc, argv, "1", &nv);
n = NUM2LONG(nv);
if (n > RARRAY(ary)->len) {
n = RARRAY(ary)->len;
}
else if (n < 0) {
rb_raise(rb_eArgError, "negative array size");
}
result = ary_shared_array(rb_cArray, ary);
RARRAY(result)->len = n;
return result;
}
static VALUE
ary_shared_last(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE result = ary_shared_first(argc, argv, ary);
RARRAY(result)->ptr += RARRAY(ary)->len - RARRAY(result)->len;
return result;
}
/*
* call-seq:
* array << obj -> array
*
* Append---Pushes the given object on to the end of this array. This
* expression returns the array itself, so several appends
* may be chained together.
*
* [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
* #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
*
*/
VALUE
rb_ary_push(ary, item)
VALUE ary;
VALUE item;
{
rb_ary_store(ary, RARRAY(ary)->len, item);
return ary;
}
/*
* call-seq:
* array.push(obj, ... ) -> array
*
* Append---Pushes the given object(s) on to the end of this array. This
* expression returns the array itself, so several appends
* may be chained together.
*
* a = [ "a", "b", "c" ]
* a.push("d", "e", "f")
* #=> ["a", "b", "c", "d", "e", "f"]
*/
static VALUE
rb_ary_push_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
while (argc--) {
rb_ary_push(ary, *argv++);
}
return ary;
}
VALUE
rb_ary_pop(ary)
VALUE ary;
{
rb_ary_modify_check(ary);
if (RARRAY(ary)->len == 0) return Qnil;
if (!FL_TEST(ary, ELTS_SHARED) &&
RARRAY(ary)->len * 2 < RARRAY(ary)->aux.capa &&
RARRAY(ary)->aux.capa > ARY_DEFAULT_SIZE) {
RARRAY(ary)->aux.capa = RARRAY(ary)->len * 2;
REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->aux.capa);
}
return RARRAY(ary)->ptr[--RARRAY(ary)->len];
}
/*
* call-seq:
* array.pop -> obj or nil
*
* Removes the last element from <i>self</i> and returns it, or
* <code>nil</code> if the array is empty.
*
* a = [ "a", "b", "c", "d" ]
* a.pop #=> "d"
* a.pop(2) #=> ["b", "c"]
* a #=> ["a"]
*/
static VALUE
rb_ary_pop_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE result;
if (argc == 0) {
return rb_ary_pop(ary);
}
rb_ary_modify_check(ary);
result = ary_shared_last(argc, argv, ary);
RARRAY(ary)->len -= RARRAY(result)->len;
return result;
}
VALUE
rb_ary_shift(ary)
VALUE ary;
{
VALUE top;
rb_ary_modify_check(ary);
if (RARRAY(ary)->len == 0) return Qnil;
top = RARRAY(ary)->ptr[0];
ary_make_shared(ary);
RARRAY(ary)->ptr++; /* shift ptr */
RARRAY(ary)->len--;
return top;
}
/*
* call-seq:
* array.shift -> obj or nil
*
* Returns the first element of <i>self</i> and removes it (shifting all
* other elements down by one). Returns <code>nil</code> if the array
* is empty.
*
* args = [ "-m", "-q", "filename" ]
* args.shift #=> "-m"
* args #=> ["-q", "filename"]
*
* args = [ "-m", "-q", "filename" ]
* args.shift(2) #=> ["-m", "-q"]
* args #=> ["filename"]
*/
static VALUE
rb_ary_shift_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE result;
long n;
if (argc == 0) {
return rb_ary_shift(ary);
}
rb_ary_modify_check(ary);
result = ary_shared_first(argc, argv, ary);
n = RARRAY(result)->len;
RARRAY(ary)->ptr += n;
RARRAY(ary)->len -= n;
return result;
}
VALUE
rb_ary_unshift(ary, item)
VALUE ary, item;
{
rb_ary_modify(ary);
if (RARRAY(ary)->len == RARRAY(ary)->aux.capa) {
long capa_inc = RARRAY(ary)->aux.capa / 2;
if (capa_inc < ARY_DEFAULT_SIZE) {
capa_inc = ARY_DEFAULT_SIZE;
}
RARRAY(ary)->aux.capa += capa_inc;
REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->aux.capa);
}
/* sliding items */
MEMMOVE(RARRAY(ary)->ptr + 1, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
RARRAY(ary)->len++;
RARRAY(ary)->ptr[0] = item;
return ary;
}
/*
* call-seq:
* array.unshift(obj, ...) -> array
*
* Prepends objects to the front of <i>array</i>.
* other elements up one.
*
* a = [ "b", "c", "d" ]
* a.unshift("a") #=> ["a", "b", "c", "d"]
* a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
*/
static VALUE
rb_ary_unshift_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long len = RARRAY(ary)->len;
if (argc == 0) return ary;
/* make rooms by setting the last item */
rb_ary_store(ary, len + argc - 1, Qnil);
/* sliding items */
MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len);
MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc);
return ary;
}
/* faster version - use this if you don't need to treat negative offset */
static inline VALUE
rb_ary_elt(ary, offset)
VALUE ary;
long offset;
{
if (RARRAY(ary)->len == 0) return Qnil;
if (offset < 0 || RARRAY(ary)->len <= offset) {
return Qnil;
}
return RARRAY(ary)->ptr[offset];
}
VALUE
rb_ary_entry(ary, offset)
VALUE ary;
long offset;
{
if (offset < 0) {
offset += RARRAY(ary)->len;
}
return rb_ary_elt(ary, offset);
}
static VALUE
rb_ary_subseq(ary, beg, len)
VALUE ary;
long beg, len;
{
VALUE klass, ary2, shared;
VALUE *ptr;
if (beg > RARRAY(ary)->len) return Qnil;
if (beg < 0 || len < 0) return Qnil;
if (beg + len > RARRAY(ary)->len) {
len = RARRAY(ary)->len - beg;
if (len < 0)
len = 0;
}
klass = rb_obj_class(ary);
if (len == 0) return ary_new(klass, 0);
shared = ary_make_shared(ary);
ptr = RARRAY(ary)->ptr;
ary2 = ary_alloc(klass);
RARRAY(ary2)->ptr = ptr + beg;
RARRAY(ary2)->len = len;
RARRAY(ary2)->aux.shared = shared;
FL_SET(ary2, ELTS_SHARED);
return ary2;
}
/*
* call-seq:
* array[index] -> obj or nil
* array[start, length] -> an_array or nil
* array[range] -> an_array or nil
* array.slice(index) -> obj or nil
* array.slice(start, length) -> an_array or nil
* array.slice(range) -> an_array or nil
*
* Element Reference---Returns the element at _index_,
* or returns a subarray starting at _start_ and
* continuing for _length_ elements, or returns a subarray
* specified by _range_.
* Negative indices count backward from the end of the
* array (-1 is the last element). Returns nil if the index
* (or starting index) are out of range.
*
* a = [ "a", "b", "c", "d", "e" ]
* a[2] + a[0] + a[1] #=> "cab"
* a[6] #=> nil
* a[1, 2] #=> [ "b", "c" ]
* a[1..3] #=> [ "b", "c", "d" ]
* a[4..7] #=> [ "e" ]
* a[6..10] #=> nil
* a[-3, 3] #=> [ "c", "d", "e" ]
* # special cases
* a[5] #=> nil
* a[5, 1] #=> []
* a[5..10] #=> []
*
*/
VALUE
rb_ary_aref(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE arg;
long beg, len;
if (argc == 2) {
beg = NUM2LONG(argv[0]);
len = NUM2LONG(argv[1]);
if (beg < 0) {
beg += RARRAY(ary)->len;
}
return rb_ary_subseq(ary, beg, len);
}
if (argc != 1) {
rb_scan_args(argc, argv, "11", 0, 0);
}
arg = argv[0];
/* special case - speeding up */
if (FIXNUM_P(arg)) {
return rb_ary_entry(ary, FIX2LONG(arg));
}
/* check if idx is Range */
switch (rb_range_beg_len(arg, &beg, &len, RARRAY(ary)->len, 0)) {
case Qfalse:
break;
case Qnil:
return Qnil;
default:
return rb_ary_subseq(ary, beg, len);
}
return rb_ary_entry(ary, NUM2LONG(arg));
}
/*
* call-seq:
* array.at(index) -> obj or nil
*
* Returns the element at _index_. A
* negative index counts from the end of _self_. Returns +nil+
* if the index is out of range. See also <code>Array#[]</code>.
* (<code>Array#at</code> is slightly faster than <code>Array#[]</code>,
* as it does not accept ranges and so on.)
*
* a = [ "a", "b", "c", "d", "e" ]
* a.at(0) #=> "a"
* a.at(-1) #=> "e"
*/
static VALUE
rb_ary_at(ary, pos)
VALUE ary, pos;
{
return rb_ary_entry(ary, NUM2LONG(pos));
}
/*
* call-seq:
* array.first -> obj or nil
* array.first(n) -> an_array
*
* Returns the first element of the array. If the array is empty,
* returns <code>nil</code>.
*
* a = [ "q", "r", "s", "t" ]
* a.first #=> "q"
* a.first(2) #=> ["q", "r"]
*/
static VALUE
rb_ary_first(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
if (argc == 0) {
if (RARRAY(ary)->len == 0) return Qnil;
return RARRAY(ary)->ptr[0];
}
else {
return ary_shared_first(argc, argv, ary);
}
}
/*
* call-seq:
* array.last -> obj or nil
* array.last(n) -> an_array
*
* Returns the last element(s) of <i>self</i>. If the array is empty,
* the first form returns <code>nil</code>.
*
* a = [ "w", "x", "y", "z" ]
* a.last #=> "z"
* a.last(2) #=> ["y", "z"]
*/
static VALUE
rb_ary_last(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
if (argc == 0) {
if (RARRAY(ary)->len == 0) return Qnil;
return RARRAY(ary)->ptr[RARRAY(ary)->len-1];
}
else {
return ary_shared_last(argc, argv, ary);
}
}
/*
* call-seq:
* array.fetch(index) -> obj
* array.fetch(index, default ) -> obj
* array.fetch(index) {|index| block } -> obj
*
* Tries to return the element at position <i>index</i>. If the index
* lies outside the array, the first form throws an
* <code>IndexError</code> exception, the second form returns
* <i>default</i>, and the third form returns the value of invoking
* the block, passing in the index. Negative values of <i>index</i>
* count from the end of the array.
*
* a = [ 11, 22, 33, 44 ]
* a.fetch(1) #=> 22
* a.fetch(-1) #=> 44
* a.fetch(4, 'cat') #=> "cat"
* a.fetch(4) { |i| i*i } #=> 16
*/
static VALUE
rb_ary_fetch(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE pos, ifnone;
long block_given;
long idx;
rb_scan_args(argc, argv, "11", &pos, &ifnone);
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
idx = NUM2LONG(pos);
if (idx < 0) {
idx += RARRAY(ary)->len;
}
if (idx < 0 || RARRAY(ary)->len <= idx) {
if (block_given) return rb_yield(pos);
if (argc == 1) {
rb_raise(rb_eIndexError, "index %ld out of array", idx);
}
return ifnone;
}
return RARRAY(ary)->ptr[idx];
}
/*
* call-seq:
* array.index(obj) -> int or nil
* array.index {|item| block} -> int or nil
*
* Returns the index of the first object in <i>self</i> such that is
* <code>==</code> to <i>obj</i>. If a block is given instead of an
* argument, returns first object for which <em>block</em> is true.
* Returns <code>nil</code> if no match is found.
*
* a = [ "a", "b", "c" ]
* a.index("b") #=> 1
* a.index("z") #=> nil
* a.index{|x|x=="b"} #=> 1
*/
static VALUE
rb_ary_index(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE val;
long i;
if (rb_scan_args(argc, argv, "01", &val) == 0) {
for (i=0; i<RARRAY(ary)->len; i++) {
if (RTEST(rb_yield(RARRAY(ary)->ptr[i]))) {
return LONG2NUM(i);
}
}
}
else {
for (i=0; i<RARRAY(ary)->len; i++) {
if (rb_equal(RARRAY(ary)->ptr[i], val))
return LONG2NUM(i);
}
}
return Qnil;
}
/*
* call-seq:
* array.rindex(obj) -> int or nil
*
* Returns the index of the last object in <i>array</i>
* <code>==</code> to <i>obj</i>. If a block is given instead of an
* argument, returns first object for which <em>block</em> is
* true. Returns <code>nil</code> if no match is found.
*
* a = [ "a", "b", "b", "b", "c" ]
* a.rindex("b") #=> 3
* a.rindex("z") #=> nil
* a.rindex{|x|x=="b"} #=> 3
*/
static VALUE
rb_ary_rindex(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE val;
long i = RARRAY(ary)->len;
if (rb_scan_args(argc, argv, "01", &val) == 0) {
while (i--) {
if (RTEST(rb_yield(RARRAY(ary)->ptr[i])))
return LONG2NUM(i);
if (i > RARRAY(ary)->len) {
i = RARRAY(ary)->len;
}
}
}
else {
while (i--) {
if (rb_equal(RARRAY(ary)->ptr[i], val))
return LONG2NUM(i);
if (i > RARRAY(ary)->len) {
i = RARRAY(ary)->len;
}
}
}
return Qnil;
}
VALUE
rb_ary_to_ary(obj)
VALUE obj;
{
if (TYPE(obj) == T_ARRAY) {
return obj;
}
if (rb_respond_to(obj, rb_intern("to_ary"))) {
return to_ary(obj);
}
return rb_ary_new3(1, obj);
}
static void
rb_ary_splice(ary, beg, len, rpl)
VALUE ary;
long beg, len;
VALUE rpl;
{
long rlen;
if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
if (beg < 0) {
beg += RARRAY(ary)->len;
if (beg < 0) {
beg -= RARRAY(ary)->len;
rb_raise(rb_eIndexError, "index %ld out of array", beg);
}
}
if (beg + len > RARRAY(ary)->len) {
len = RARRAY(ary)->len - beg;
}
if (rpl == Qundef) {
rlen = 0;
}
else {
rpl = rb_ary_to_ary(rpl);
rlen = RARRAY(rpl)->len;
}
rb_ary_modify(ary);
if (beg >= RARRAY(ary)->len) {
len = beg + rlen;
if (len >= RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, len);
RARRAY(ary)->aux.capa = len;
}
rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len, beg - RARRAY(ary)->len);
if (rlen > 0) {
MEMCPY(RARRAY(ary)->ptr + beg, RARRAY(rpl)->ptr, VALUE, rlen);
}
RARRAY(ary)->len = len;
}
else {
long alen;
if (beg + len > RARRAY(ary)->len) {
len = RARRAY(ary)->len - beg;
}
alen = RARRAY(ary)->len + rlen - len;
if (alen >= RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, alen);
RARRAY(ary)->aux.capa = alen;
}
if (len != rlen) {
MEMMOVE(RARRAY(ary)->ptr + beg + rlen, RARRAY(ary)->ptr + beg + len,
VALUE, RARRAY(ary)->len - (beg + len));
RARRAY(ary)->len = alen;
}
if (rlen > 0) {
MEMMOVE(RARRAY(ary)->ptr + beg, RARRAY(rpl)->ptr, VALUE, rlen);
}
}
}
/*
* call-seq:
* array[index] = obj -> obj
* array[start, length] = obj or an_array or nil -> obj or an_array or nil
* array[range] = obj or an_array or nil -> obj or an_array or nil
*
* Element Assignment---Sets the element at _index_,
* or replaces a subarray starting at _start_ and
* continuing for _length_ elements, or replaces a subarray
* specified by _range_. If indices are greater than
* the current capacity of the array, the array grows
* automatically. A negative indices will count backward
* from the end of the array. Inserts elements if _length_ is
* zero. An +IndexError+ is raised if a negative index points
* past the beginning of the array. See also
* <code>Array#push</code>, and <code>Array#unshift</code>.
*
* a = Array.new
* a[4] = "4"; #=> [nil, nil, nil, nil, "4"]
* a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
* a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"]
* a[0, 2] = "?" #=> ["?", 2, nil, "4"]
* a[0..2] = "A" #=> ["A", "4"]
* a[-1] = "Z" #=> ["A", "Z"]
* a[1..-1] = nil #=> ["A", nil]
* a[1..-1] = [] #=> ["A"]
*/
static VALUE
rb_ary_aset(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long offset, beg, len;
if (argc == 3) {
rb_ary_splice(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]);
return argv[2];
}
if (argc != 2) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
}
if (FIXNUM_P(argv[0])) {
offset = FIX2LONG(argv[0]);
goto fixnum;
}
if (rb_range_beg_len(argv[0], &beg, &len, RARRAY(ary)->len, 1)) {
/* check if idx is Range */
rb_ary_splice(ary, beg, len, argv[1]);
return argv[1];
}
offset = NUM2LONG(argv[0]);
fixnum:
rb_ary_store(ary, offset, argv[1]);
return argv[1];
}
/*
* call-seq:
* array.insert(index, obj...) -> array
*
* Inserts the given values before the element with the given index
* (which may be negative).
*
* a = %w{ a b c d }
* a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
* a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
*/
static VALUE
rb_ary_insert(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long pos;
if (argc < 1) {
rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
}
pos = NUM2LONG(argv[0]);
if (pos == -1) {
pos = RARRAY(ary)->len;
}
else if (pos < 0) {
pos++;
}
if (argc == 1) return ary;
rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
return ary;
}
/*
* call-seq:
* array.each {|item| block } -> array
*
* Calls <i>block</i> once for each element in <i>self</i>, passing that
* element as a parameter.
*
* a = [ "a", "b", "c" ]
* a.each {|x| print x, " -- " }
*
* produces:
*
* a -- b -- c --
*/
VALUE
rb_ary_each(ary)
VALUE ary;
{
long i;
for (i=0; i<RARRAY(ary)->len; i++) {
rb_yield(RARRAY(ary)->ptr[i]);
}
return ary;
}
/*
* call-seq:
* array.each_index {|index| block } -> array
*
* Same as <code>Array#each</code>, but passes the index of the element
* instead of the element itself.
*
* a = [ "a", "b", "c" ]
* a.each_index {|x| print x, " -- " }
*
* produces:
*
* 0 -- 1 -- 2 --
*/
static VALUE
rb_ary_each_index(ary)
VALUE ary;
{
long i;
for (i=0; i<RARRAY(ary)->len; i++) {
rb_yield(LONG2NUM(i));
}
return ary;
}
/*
* call-seq:
* array.reverse_each {|item| block }
*
* Same as <code>Array#each</code>, but traverses <i>self</i> in reverse
* order.
*
* a = [ "a", "b", "c" ]
* a.reverse_each {|x| print x, " " }
*
* produces:
*
* c b a
*/
static VALUE
rb_ary_reverse_each(ary)
VALUE ary;
{
long len = RARRAY(ary)->len;
while (len--) {
rb_yield(RARRAY(ary)->ptr[len]);
if (RARRAY(ary)->len < len) {
len = RARRAY(ary)->len;
}
}
return ary;
}
/*
* call-seq:
* array.length -> int
*
* Returns the number of elements in <i>self</i>. May be zero.
*
* [ 1, 2, 3, 4, 5 ].length #=> 5
*/
static VALUE
rb_ary_length(ary)
VALUE ary;
{
return LONG2NUM(RARRAY(ary)->len);
}
/*
* call-seq:
* array.empty? -> true or false
*
* Returns <code>true</code> if <i>self</i> array contains no elements.
*
* [].empty? #=> true
*/
static VALUE
rb_ary_empty_p(ary)
VALUE ary;
{
if (RARRAY(ary)->len == 0)
return Qtrue;
return Qfalse;
}
VALUE
rb_ary_dup(ary)
VALUE ary;
{
VALUE dup = rb_ary_new2(RARRAY(ary)->len);
DUPSETUP(dup, ary);
MEMCPY(RARRAY(dup)->ptr, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
RARRAY(dup)->len = RARRAY(ary)->len;
return dup;
}
extern VALUE rb_output_fs;
static VALUE
recursive_join(ary, arg, recur)
VALUE ary;
VALUE *arg;
int recur;
{
if (recur) {
return rb_str_new2("[...]");
}
return rb_ary_join(arg[0], arg[1]);
}
VALUE
rb_ary_join(ary, sep)
VALUE ary, sep;
{
long len = 1, i;
int taint = Qfalse;
VALUE result, tmp;
if (RARRAY(ary)->len == 0) return rb_str_new(0, 0);
if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = Qtrue;
for (i=0; i<RARRAY(ary)->len; i++) {
tmp = rb_check_string_type(RARRAY(ary)->ptr[i]);
len += NIL_P(tmp) ? 10 : RSTRING(tmp)->len;
}
if (!NIL_P(sep)) {
StringValue(sep);
len += RSTRING(sep)->len * (RARRAY(ary)->len - 1);
}
result = rb_str_buf_new(len);
for (i=0; i<RARRAY(ary)->len; i++) {
tmp = RARRAY(ary)->ptr[i];
switch (TYPE(tmp)) {
case T_STRING:
break;
case T_ARRAY:
{
VALUE args[2];
args[0] = tmp;
args[1] = sep;
tmp = rb_exec_recursive(recursive_join, ary, (VALUE)args);
}
break;
default:
tmp = rb_obj_as_string(tmp);
}
if (i > 0 && !NIL_P(sep))
rb_str_buf_append(result, sep);
rb_str_buf_append(result, tmp);
if (OBJ_TAINTED(tmp)) taint = Qtrue;
}
if (taint) OBJ_TAINT(result);
return result;
}
/*
* call-seq:
* array.join(sep=$,) -> str
*
* Returns a string created by converting each element of the array to
* a string, separated by <i>sep</i>.
*
* [ "a", "b", "c" ].join #=> "abc"
* [ "a", "b", "c" ].join("-") #=> "a-b-c"
*/
static VALUE
rb_ary_join_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE sep;
rb_scan_args(argc, argv, "01", &sep);
if (NIL_P(sep)) sep = rb_output_fs;
return rb_ary_join(ary, sep);
}
/*
* call-seq:
* array.to_s -> string
*
* Returns _self_<code>.join</code>.
*
* [ "a", "e", "i", "o" ].to_s #=> "aeio"
*
*/
VALUE
rb_ary_to_s(ary)
VALUE ary;
{
if (RARRAY(ary)->len == 0) return rb_str_new(0, 0);
return rb_ary_join(ary, rb_output_fs);
}
static VALUE
inspect_ary(ary, dummy, recur)
VALUE ary;
VALUE dummy;
int recur;
{
int tainted = OBJ_TAINTED(ary);
long i;
VALUE s, str;
if (recur) return rb_tainted_str_new2("[...]");
str = rb_str_buf_new2("[");
for (i=0; i<RARRAY(ary)->len; i++) {
s = rb_inspect(RARRAY(ary)->ptr[i]);
if (OBJ_TAINTED(s)) tainted = Qtrue;
if (i > 0) rb_str_buf_cat2(str, ", ");
rb_str_buf_append(str, s);
}
rb_str_buf_cat2(str, "]");
if (tainted) OBJ_TAINT(str);
return str;
}
/*
* call-seq:
* array.inspect -> string
*
* Create a printable version of <i>array</i>.
*/
static VALUE
rb_ary_inspect(ary)
VALUE ary;
{
if (RARRAY(ary)->len == 0) return rb_str_new2("[]");
return rb_exec_recursive(inspect_ary, ary, 0);
}
/*
* call-seq:
* array.to_a -> array
*
* Returns _self_. If called on a subclass of Array, converts
* the receiver to an Array object.
*/
static VALUE
rb_ary_to_a(ary)
VALUE ary;
{
if (rb_obj_class(ary) != rb_cArray) {
VALUE dup = rb_ary_new2(RARRAY(ary)->len);
rb_ary_replace(dup, ary);
return dup;
}
return ary;
}
/*
* call-seq:
* array.to_ary -> array
*
* Returns _self_.
*/
static VALUE
rb_ary_to_ary_m(ary)
VALUE ary;
{
return ary;
}
VALUE
rb_ary_reverse(ary)
VALUE ary;
{
VALUE *p1, *p2;
VALUE tmp;
rb_ary_modify(ary);
if (RARRAY(ary)->len > 1) {
p1 = RARRAY(ary)->ptr;
p2 = p1 + RARRAY(ary)->len - 1; /* points last item */
while (p1 < p2) {
tmp = *p1;
*p1++ = *p2;
*p2-- = tmp;
}
}
return ary;
}
/*
* call-seq:
* array.reverse! -> array
*
* Reverses _self_ in place.
*
* a = [ "a", "b", "c" ]
* a.reverse! #=> ["c", "b", "a"]
* a #=> ["c", "b", "a"]
*/
static VALUE
rb_ary_reverse_bang(ary)
VALUE ary;
{
return rb_ary_reverse(ary);
}
/*
* call-seq:
* array.reverse -> an_array
*
* Returns a new array containing <i>self</i>'s elements in reverse order.
*
* [ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
* [ 1 ].reverse #=> [1]
*/
static VALUE
rb_ary_reverse_m(ary)
VALUE ary;
{
return rb_ary_reverse(rb_ary_dup(ary));
}
struct ary_sort_data {
VALUE ary;
VALUE *ptr;
long len;
};
static void
ary_sort_check(data)
struct ary_sort_data *data;
{
if (RARRAY(data->ary)->ptr != data->ptr || RARRAY(data->ary)->len != data->len) {
rb_raise(rb_eRuntimeError, "array modified during sort");
}
}
static int
sort_1(a, b, data)
VALUE *a, *b;
struct ary_sort_data *data;
{
VALUE retval = rb_yield_values(2, *a, *b);
int n;
n = rb_cmpint(retval, *a, *b);
ary_sort_check(data);
return n;
}
static int
sort_2(ap, bp, data)
VALUE *ap, *bp;
struct ary_sort_data *data;
{
VALUE retval;
VALUE a = *ap, b = *bp;
int n;
if (FIXNUM_P(a) && FIXNUM_P(b)) {
if ((long)a > (long)b) return 1;
if ((long)a < (long)b) return -1;
return 0;
}
if (TYPE(a) == T_STRING && TYPE(b) == T_STRING) {
return rb_str_cmp(a, b);
}
retval = rb_funcall(a, id_cmp, 1, b);
n = rb_cmpint(retval, a, b);
ary_sort_check(data);
return n;
}
static VALUE
sort_internal(ary)
VALUE ary;
{
struct ary_sort_data data;
data.ary = ary;
data.ptr = RARRAY(ary)->ptr; data.len = RARRAY(ary)->len;
qsort(RARRAY(ary)->ptr, RARRAY(ary)->len, sizeof(VALUE),
rb_block_given_p()?sort_1:sort_2, &data);
return ary;
}
static VALUE
sort_unlock(ary)
VALUE ary;
{
FL_UNSET(ary, ARY_TMPLOCK);
return ary;
}
/*
* call-seq:
* array.sort! -> array
* array.sort! {| a,b | block } -> array
*
* Sorts _self_. Comparisons for
* the sort will be done using the <code><=></code> operator or using
* an optional code block. The block implements a comparison between
* <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
* <code>Enumerable#sort_by</code>.
*
* a = [ "d", "a", "e", "c", "b" ]
* a.sort #=> ["a", "b", "c", "d", "e"]
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
*/
VALUE
rb_ary_sort_bang(ary)
VALUE ary;
{
rb_ary_modify(ary);
if (RARRAY(ary)->len > 1) {
FL_SET(ary, ARY_TMPLOCK); /* prohibit modification during sort */
rb_ensure(sort_internal, ary, sort_unlock, ary);
}
return ary;
}
/*
* call-seq:
* array.sort -> an_array
* array.sort {| a,b | block } -> an_array
*
* Returns a new array created by sorting <i>self</i>. Comparisons for
* the sort will be done using the <code><=></code> operator or using
* an optional code block. The block implements a comparison between
* <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
* <code>Enumerable#sort_by</code>.
*
* a = [ "d", "a", "e", "c", "b" ]
* a.sort #=> ["a", "b", "c", "d", "e"]
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
*/
VALUE
rb_ary_sort(ary)
VALUE ary;
{
ary = rb_ary_dup(ary);
rb_ary_sort_bang(ary);
return ary;
}
/*
* call-seq:
* array.collect {|item| block } -> an_array
* array.map {|item| block } -> an_array
*
* Invokes <i>block</i> once for each element of <i>self</i>. Creates a
* new array containing the values returned by the block.
* See also <code>Enumerable#collect</code>.
*
* a = [ "a", "b", "c", "d" ]
* a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
* a #=> ["a", "b", "c", "d"]
*/
static VALUE
rb_ary_collect(ary)
VALUE ary;
{
long i;
VALUE collect;
if (!rb_block_given_p()) {
return rb_ary_new4(RARRAY(ary)->len, RARRAY(ary)->ptr);
}
collect = rb_ary_new2(RARRAY(ary)->len);
for (i = 0; i < RARRAY(ary)->len; i++) {
rb_ary_push(collect, rb_yield(RARRAY(ary)->ptr[i]));
}
return collect;
}
/*
* call-seq:
* array.collect! {|item| block } -> array
* array.map! {|item| block } -> array
*
* Invokes the block once for each element of _self_, replacing the
* element with the value returned by _block_.
* See also <code>Enumerable#collect</code>.
*
* a = [ "a", "b", "c", "d" ]
* a.collect! {|x| x + "!" }
* a #=> [ "a!", "b!", "c!", "d!" ]
*/
static VALUE
rb_ary_collect_bang(ary)
VALUE ary;
{
long i;
rb_ary_modify(ary);
for (i = 0; i < RARRAY(ary)->len; i++) {
rb_ary_store(ary, i, rb_yield(RARRAY(ary)->ptr[i]));
}
return ary;
}
VALUE
rb_get_values_at(obj, olen, argc, argv, func)
VALUE obj;
long olen;
int argc;
VALUE *argv;
VALUE (*func) _((VALUE,long));
{
VALUE result = rb_ary_new2(argc);
long beg, len, i, j;
for (i=0; i<argc; i++) {
if (FIXNUM_P(argv[i])) {
rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
continue;
}
/* check if idx is Range */
switch (rb_range_beg_len(argv[i], &beg, &len, olen, 0)) {
case Qfalse:
break;
case Qnil:
continue;
default:
for (j=0; j<len; j++) {
rb_ary_push(result, (*func)(obj, j+beg));
}
continue;
}
rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
}
return result;
}
/*
* call-seq:
* array.values_at(selector,... ) -> an_array
*
* Returns an array containing the elements in
* _self_ corresponding to the given selector(s). The selectors
* may be either integer indices or ranges.
* See also <code>Array#select</code>.
*
* a = %w{ a b c d e f }
* a.values_at(1, 3, 5)
* a.values_at(1, 3, 5, 7)
* a.values_at(-1, -3, -5, -7)
* a.values_at(1..3, 2...5)
*/
static VALUE
rb_ary_values_at(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
return rb_get_values_at(ary, RARRAY(ary)->len, argc, argv, rb_ary_entry);
}
/*
* call-seq:
* array.select {|item| block } -> an_array
*
* Invokes the block passing in successive elements from <i>array</i>,
* returning an array containing those elements for which the block
* returns a true value (equivalent to <code>Enumerable#select</code>).
*
* a = %w{ a b c d e f }
* a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
*/
static VALUE
rb_ary_select(ary)
VALUE ary;
{
VALUE result;
long i;
result = rb_ary_new2(RARRAY(ary)->len);
for (i = 0; i < RARRAY(ary)->len; i++) {
if (RTEST(rb_yield(RARRAY(ary)->ptr[i]))) {
rb_ary_push(result, rb_ary_elt(ary, i));
}
}
return result;
}