Hana 9e216da9ef go.mod: add go.mod and move pygments to third_party
After go1.16, go will use module mode by default,
even when the repository is checked out under GOPATH
or in a one-off directory. Add go.mod, go.sum to keep
this repo buildable without opting out of the module
mode.

> go mod init github.com/mmcgrana/gobyexample
> go mod tidy
> go mod vendor

In module mode, the 'vendor' directory is special
and its contents will be actively maintained by the
go command. pygments aren't the dependency the go will
know about, so it will delete the contents from vendor
directory. Move it to `third_party` directory now.

And, vendor the blackfriday package.

Note: the tutorial contents are not affected by the
change in go1.16 because all the examples in this
tutorial ask users to run the go command with the
explicit list of files to be compiled (e.g.
`go run hello-world.go` or `go build command-line-arguments.go`).
When the source list is provided, the go command does
not have to compute the build list and whether it's
running in GOPATH mode or module mode becomes irrelevant.
2021-02-15 16:45:26 -05:00

132 lines
10 KiB
Plaintext

// example file for roundedpath() in roundedpath.asy
// written by stefan knorr
// import needed packages
import roundedpath;
// function definition
picture CreateKOOS(real Scale, string legend) // draw labeled coordinate system as picture
{
picture ReturnPic;
real S = 1.2*Scale;
draw(ReturnPic, ((-S,0)--(S,0)), bar = EndArrow); // x axis
draw(ReturnPic, ((0,-S)--(0,S)), bar = EndArrow); // y axis
label(ReturnPic, "$\varepsilon$", (S,0), SW); // x axis label
label(ReturnPic, "$\sigma$", (0,S), SW); // y axis label
label(ReturnPic, legend, (0.7S, -S), NW); // add label 'legend'
return ReturnPic; // return picture
}
// some global definitions
real S = 13mm; // universal scale factor for the whole file
real grad = 0.25; // gradient for lines
real radius = 0.04; // radius for the rounded path'
real lw = 2; // linewidth
pair A = (-1, -1); // start point for graphs
pair E = ( 1, 1); // end point for graphs
path graph; // local graph
pen ActPen; // actual pen for each drawing
picture T[]; // vector of all four diagrams
real inc = 2.8; // increment-offset for combining pictures
//////////////////////////////////////// 1st diagram
T[1] = CreateKOOS(S, "$T_1$"); // initialise T[1] as empty diagram with label $T_1$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*1.6, A.y + 1.6); // #
graph = graph -- (E.x - grad*0.4, E.y - 0.4); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0,0,0.6) + linewidth(lw); // define pen for drawing in 1st diagram
draw(T[1], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[1]' (1st hysteresis branch)
draw(T[1], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
graph = (0,0) -- (grad*0.6, 0.6) -- ( (grad*0.6, 0.6) + (0.1, 0) ); // define branch from origin to hysteresis
graph = roundedpath(graph, radius, S); // round this path
draw(T[1], graph, ActPen); // draw this path into 'T[1]'
//////////////////////////////////////// 2nd diagram
T[2] = CreateKOOS(S, "$T_2$"); // initialise T[2] as empty diagram with label $T_2$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*1.3, A.y + 1.3); // #
graph = graph -- (E.x - grad*0.7 , E.y - 0.7); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0.2,0,0.4) + linewidth(lw); // define pen for drawing in 2nd diagram
draw(T[2], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[2]' (1st hysteresis branch)
draw(T[2], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
graph = (0,0) -- (grad*0.3, 0.3) -- ( (grad*0.3, 0.3) + (0.1, 0) ); // define branch from origin to hysteresis
graph = roundedpath(graph, radius, S); // round this path
draw(T[2], graph, ActPen); // draw this path into 'T[2]'
//////////////////////////////////////// 3rd diagram
T[3] = CreateKOOS(S, "$T_3$"); // initialise T[3] as empty diagram with label $T_3$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*0.7, A.y + 0.7); // #
graph = graph -- ( - grad*0.3 , - 0.3); // #
graph = graph -- (0,0); // #
graph = graph -- (grad*0.6, 0.6); // #
graph = graph -- (E.x - grad*0.4, E.y - 0.4); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0.6,0,0.2) + linewidth(lw); // define pen for drawing in 3rd diagram
draw(T[3], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[3]' (1st hysteresis branch)
draw(T[3], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
//////////////////////////////////////// 4th diagram
T[4] = CreateKOOS(S, "$T_4$"); // initialise T[4] as empty diagram with label $T_4$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*0.4, A.y + 0.4); // #
graph = graph -- ( - grad*0.6 , - 0.6); // #
graph = graph -- (0,0); // #
graph = graph -- (grad*0.9, 0.9); // #
graph = graph -- (E.x - grad*0.1, E.y - 0.1); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0.6,0,0) + linewidth(lw); // define pen for drawing in 4th diagram
draw(T[4], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[4]' (1st hysteresis branch)
draw(T[4], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (3nd hysteresis branch)
// add some labels and black dots to the first two pictures
pair SWW = (-0.8, -0.6);
label(T[1], "$\sigma_f$", (0, 0.6S), NE); // sigma_f
draw(T[1], (0, 0.6S), linewidth(3) + black);
label(T[2], "$\sigma_f$", (0, 0.3S), NE); // sigma_f
draw(T[2], (0, 0.3S), linewidth(3) + black);
label(T[1], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p
draw(T[1], (0.75S, 0), linewidth(3) + black);
label(T[2], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p
draw(T[2], (0.75S, 0), linewidth(3) + black);
// add all pictures T[1...4] to the current one
add(T[1],(0,0));
add(T[2],(1*inc*S,0));
add(T[3],(2*inc*S,0));
add(T[4],(3*inc*S,0));
// draw line of constant \sigma and all intersection points with the graphs in T[1...4]
ActPen = linewidth(1) + dashed + gray(0.5); // pen definition
draw((-S, 0.45*S)--((3*inc+1)*S, 0.45*S), ActPen); // draw backgoundline
label("$\sigma_s$", (-S, 0.45S), W); // label 'sigma_s'
path mark = scale(2)*unitcircle; // define mark-symbol to be used for intersections
ActPen = linewidth(1) + gray(0.5); // define pen for intersection mark
draw(shift(( 1 - grad*0.55 + 0*inc)*S, 0.45*S)*mark, ActPen); // # draw all intersections
draw(shift((-1 + grad*1.45 + 0*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( 1 - grad*0.55 + 1*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( 1 - grad*0.55 + 2*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( grad*0.45 + 2*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( grad*0.45 + 3*inc)*S, 0.45*S)*mark, ActPen); // #