Eli Bendersky a34c967eaf Clarify use of buffered channel in the timeouts example.
The buffered channel prevents goroutine leaks in case the
channel doesn't end up being read (as indeed happens to c1).

Updates #207
2019-09-05 13:30:16 -07:00

52 lines
1.4 KiB
Go

// _Timeouts_ are important for programs that connect to
// external resources or that otherwise need to bound
// execution time. Implementing timeouts in Go is easy and
// elegant thanks to channels and `select`.
package main
import "time"
import "fmt"
func main() {
// For our example, suppose we're executing an external
// call that returns its result on a channel `c1`
// after 2s. Note that the channel is buffered, so the
// send in the goroutine is nonblocking. This is a
// common pattern to prevent goroutine leaks in case the
// channel is never read.
c1 := make(chan string, 1)
go func() {
time.Sleep(2 * time.Second)
c1 <- "result 1"
}()
// Here's the `select` implementing a timeout.
// `res := <-c1` awaits the result and `<-Time.After`
// awaits a value to be sent after the timeout of
// 1s. Since `select` proceeds with the first
// receive that's ready, we'll take the timeout case
// if the operation takes more than the allowed 1s.
select {
case res := <-c1:
fmt.Println(res)
case <-time.After(1 * time.Second):
fmt.Println("timeout 1")
}
// If we allow a longer timeout of 3s, then the receive
// from `c2` will succeed and we'll print the result.
c2 := make(chan string, 1)
go func() {
time.Sleep(2 * time.Second)
c2 <- "result 2"
}()
select {
case res := <-c2:
fmt.Println(res)
case <-time.After(3 * time.Second):
fmt.Println("timeout 2")
}
}