
After go1.16, go will use module mode by default, even when the repository is checked out under GOPATH or in a one-off directory. Add go.mod, go.sum to keep this repo buildable without opting out of the module mode. > go mod init github.com/mmcgrana/gobyexample > go mod tidy > go mod vendor In module mode, the 'vendor' directory is special and its contents will be actively maintained by the go command. pygments aren't the dependency the go will know about, so it will delete the contents from vendor directory. Move it to `third_party` directory now. And, vendor the blackfriday package. Note: the tutorial contents are not affected by the change in go1.16 because all the examples in this tutorial ask users to run the go command with the explicit list of files to be compiled (e.g. `go run hello-world.go` or `go build command-line-arguments.go`). When the source list is provided, the go command does not have to compute the build list and whether it's running in GOPATH mode or module mode becomes irrelevant.
584 lines
13 KiB
Haxe
584 lines
13 KiB
Haxe
package util;
|
|
|
|
import util.Map;
|
|
import util.Collection;
|
|
import util.Set;
|
|
import util.Option;
|
|
import util.Debug;
|
|
import util.Throwable;
|
|
|
|
using util.StringFormat;
|
|
|
|
/**
|
|
* An ordered map of (key,value) pairs. The key ordering is defined by
|
|
* a comparison function specified at construction. Duplicate keys
|
|
* are not allowed.
|
|
*
|
|
* Worst Case Time and Space Complexities:
|
|
* [operation] [time] [space]
|
|
* insert O(lg(n)) O(lg(n))
|
|
* find O(lg(n)) O(1)
|
|
* delete O(lg(n)) O(lg(n))
|
|
* range-query O(lg(n))* O(lg(n))
|
|
* iteration O(n)** O(lg(n))
|
|
* *range-query returns an iterator over elements in the range
|
|
* **total cost of iterating over the entire map
|
|
*
|
|
* The map is backed by a Left-Leaning Red-Black 2-3 Tree
|
|
* adapted from Robert Sedgewick (2008) (http://www.cs.princeton.edu/~rs/)
|
|
*
|
|
* Implementation choices (let size of tree be n)
|
|
* - Parent Pointers
|
|
* - This implementation omits parent pointers.
|
|
* - Omitting parent pointers saves n words of persistent memory
|
|
* at the expense of lg(n) stack space per operation.
|
|
* - Without parent pointers, most operations in the tree must
|
|
* either use recursion, or simulate recursion by saving a history
|
|
* of nodes via a stack. For example, each iterator will require
|
|
* lg(n) extra space to track progress through the tree. Insertions
|
|
* and deletions into the tree will also invalidate any existing
|
|
* iterators.
|
|
* - Node Size Information
|
|
* - This implementation omits the size of each node.
|
|
* - Omitting size information saves n words of long-term memory at
|
|
* the expense of not providing a find-kth operation.
|
|
* - This seems like a reasonable trade-off as range queries are
|
|
* generally more common than find-kth operations. The implementation
|
|
* used below could easily be modified to provide a version with
|
|
* size information should find-kth be of specific interest.
|
|
* - Recursive vs. Iterative
|
|
* - This implementation uses recursive algorithms.
|
|
* - The recursive implementations allow the code to remain compact and
|
|
* understandable. Since the height of LLRB 2-3 Trees is gaurenteed
|
|
* to be at most 2lg(n), stack overflow is typically not a concern.
|
|
* Unlike the standard single-rotation red-black algorithm, LLRB
|
|
* operations are not tail-recursive, so even an iterative
|
|
* version will require lg(n) extra memory.
|
|
*/
|
|
class OrderedMap<K,V>
|
|
{
|
|
private var root :Null<Node<K,V>>;
|
|
private var nodeCount :Int;
|
|
private var comp :K -> K -> Int;
|
|
|
|
public function new( keyComp :K -> K -> Int )
|
|
{
|
|
root = null;
|
|
comp = keyComp;
|
|
nodeCount = 0;
|
|
assertInvariants();
|
|
}
|
|
|
|
/**
|
|
* @returns Some(v) if (\key,v) is in the map, None otherwise.
|
|
*/
|
|
public function get(key :K) :Option<V>
|
|
{
|
|
//normal BST search
|
|
var n = root;
|
|
while( n != null )
|
|
{
|
|
var cmp = comp(key,n.key);
|
|
if( cmp < 0 )
|
|
{
|
|
n = n.left;
|
|
}
|
|
else if ( cmp > 0 )
|
|
{
|
|
n = n.right;
|
|
}
|
|
else
|
|
{
|
|
return Some(n.val);
|
|
}
|
|
}
|
|
return None;
|
|
}
|
|
|
|
/**
|
|
* Puts (\key,\val) into the map or replaces the current value of \key
|
|
* with \val.
|
|
*
|
|
* @return None if \key currently is not in the map, or Some(v) if (\key,v)
|
|
* was in the map before the put operation.
|
|
*/
|
|
public function set(key :K, val :V) :Option<V>
|
|
{
|
|
var ret = new Ref<V>(null);
|
|
root = insertNode(root,key,val,ret);
|
|
root.color = black;
|
|
|
|
assertInvariants();
|
|
|
|
if( ret.r == null )
|
|
{
|
|
return None;
|
|
}
|
|
return Some(ret.r);
|
|
}
|
|
|
|
private function insertNode(n :Node<K,V>, key :K, val :V, ret :Ref<V>)
|
|
{
|
|
//do the insertion at the leaf level
|
|
if( n == null )
|
|
{
|
|
++nodeCount;
|
|
return new Node<K,V>(key,val);
|
|
}
|
|
|
|
//normal BST search
|
|
var cmp = comp(key,n.key);
|
|
if( cmp < 0 )
|
|
{
|
|
n.left = insertNode(n.left,key,val,ret);
|
|
}
|
|
else if( cmp > 0 )
|
|
{
|
|
n.right = insertNode(n.right,key,val,ret);
|
|
}
|
|
else
|
|
{
|
|
//the key is already in the map, update the value
|
|
ret.r = n.val;
|
|
n.val = val;
|
|
}
|
|
|
|
return fixInvariants(n);
|
|
}
|
|
|
|
/**
|
|
* Removes (\key,v) from the map if it exists.
|
|
*
|
|
* @return None if (\key,v) wasn't in the map, Some(v) otherwise.
|
|
*/
|
|
public function remove(key :K) :Option<V>
|
|
{
|
|
var ret = new Ref<V>(null);
|
|
if( root != null )
|
|
{
|
|
root = deleteNode(root,key,ret);
|
|
if( root != null )
|
|
{
|
|
root.color = black;
|
|
}
|
|
}
|
|
|
|
assertInvariants();
|
|
|
|
if( ret.r == null )
|
|
{
|
|
return None;
|
|
}
|
|
return Some(ret.r);
|
|
}
|
|
|
|
private function deleteNode( n :Node<K,V>, key :K, ret :Ref<V> )
|
|
{
|
|
if( comp(key,n.key) < 0 )
|
|
{
|
|
if( isBlack(n.left) && isBlack(n.left.left) )
|
|
{
|
|
//ensure we move into a 3-node
|
|
n = moveRedLeft(n);
|
|
}
|
|
n.left = deleteNode(n.left,key,ret);
|
|
}
|
|
else
|
|
{
|
|
if( isRed(n.left) )
|
|
{
|
|
//ensure we move into a 3-node
|
|
n = rotateRight(n);
|
|
}
|
|
if( comp(key,n.key) == 0 && n.right == null )
|
|
{
|
|
//delete the node
|
|
ret.r = n.val;
|
|
--nodeCount;
|
|
return null;
|
|
}
|
|
if( isBlack(n.right) && isBlack(n.right.left) )
|
|
{
|
|
//ensure we move into a 3-node
|
|
n = moveRedRight(n);
|
|
}
|
|
if( comp(key,n.key) == 0 )
|
|
{
|
|
Debug.assert(n.right != null);
|
|
|
|
ret.r = n.val;
|
|
|
|
//ensure we are deleting a node with at most one child
|
|
var min = minNode(n.right);
|
|
n.val = min.val;
|
|
n.key = min.key;
|
|
n.right = deleteMinNode(n.right);
|
|
}
|
|
else
|
|
{
|
|
n.right = deleteNode(n.right,key,ret);
|
|
}
|
|
}
|
|
|
|
return fixInvariants(n);
|
|
}
|
|
|
|
/** returns a view of the set of keys in this TreeMap **/
|
|
public function keys() :SetView<K>
|
|
{
|
|
var _this = this;
|
|
|
|
return {
|
|
size: function() return _this.size(),
|
|
iterator: function() return IterTools.mapIter(new NodeIterator(_this.root),function(x) return x.key),
|
|
exists: function(x) {
|
|
return switch(_this.get(x))
|
|
{
|
|
case None: false;
|
|
case Some(_): true;
|
|
};
|
|
},
|
|
};
|
|
}
|
|
|
|
/** returns a view of the collection of values in this TreeMap **/
|
|
public function values() :CollectionView<V>
|
|
{
|
|
var _this = this;
|
|
|
|
return {
|
|
size: function() return _this.size(),
|
|
iterator: function() return IterTools.mapIter(new NodeIterator(_this.root),function(x) return x.val),
|
|
};
|
|
}
|
|
|
|
/** returns a view of the (key,value) pairs in this TreeMap **/
|
|
public function entries() :CollectionView<Entry<K,V>>
|
|
{
|
|
var _this = this;
|
|
|
|
return {
|
|
size: function() {
|
|
return _this.size();
|
|
},
|
|
iterator: function() {
|
|
return cast new NodeIterator(_this.root);
|
|
},
|
|
};
|
|
}
|
|
|
|
/** returns the number of (key,value) pairs in the map **/
|
|
public function size() :Int
|
|
{
|
|
return nodeCount;
|
|
}
|
|
|
|
public function toString() :String
|
|
{
|
|
var sb = new StringBuf();
|
|
|
|
sb.add("{");
|
|
for( entry in this.entries() )
|
|
{
|
|
sb.add("%y => %y, ".sprintf([entry.key,entry.val]));
|
|
}
|
|
sb.add("}");
|
|
|
|
return sb.toString();
|
|
}
|
|
|
|
private static function isRed<K,V>( n :Node<K,V> )
|
|
{
|
|
if( n == null ) return false;
|
|
return switch(n.color)
|
|
{
|
|
case red: true;
|
|
case black: false;
|
|
};
|
|
}
|
|
|
|
private static inline function isBlack<K,V>( n :Node<K,V> )
|
|
{
|
|
return !isRed(n);
|
|
}
|
|
|
|
private static function colorFlip<K,V>( n :Node<K,V> )
|
|
{
|
|
n.color = oppositeColor(n.color);
|
|
n.left.color = oppositeColor(n.left.color);
|
|
n.right.color = oppositeColor(n.right.color);
|
|
}
|
|
|
|
private static inline function oppositeColor( c :Color )
|
|
{
|
|
return switch(c)
|
|
{
|
|
case red: black;
|
|
case black: red;
|
|
};
|
|
}
|
|
|
|
private static function rotateLeft<K,V>( n :Node<K,V> )
|
|
{
|
|
Debug.assert(n != null);
|
|
Debug.assert(n.right != null);
|
|
/*
|
|
n x
|
|
/ \ / \
|
|
a x => n c
|
|
/ \ / \
|
|
b c a b
|
|
*/
|
|
var x = n.right;
|
|
n.right = x.left;
|
|
x.left = n;
|
|
x.color = n.color;
|
|
n.color = red;
|
|
return x;
|
|
}
|
|
|
|
private static function rotateRight<K,V>( n :Node<K,V> )
|
|
{
|
|
Debug.assert( n != null );
|
|
Debug.assert( n.left != null );
|
|
/*
|
|
n x
|
|
/ \ / \
|
|
x c => a n
|
|
/ \ / \
|
|
a b b c
|
|
*/
|
|
var x = n.left;
|
|
n.left = x.right;
|
|
x.right = n;
|
|
x.color = n.color;
|
|
n.color = red;
|
|
return x;
|
|
}
|
|
|
|
private static function moveRedLeft<K,V>( n :Node<K,V> )
|
|
{
|
|
//borrow extra node from right child (which is a 3-node)
|
|
colorFlip(n);
|
|
if( isRed(n.right.left) )
|
|
{
|
|
n.right = rotateRight(n.right);
|
|
n = rotateLeft(n);
|
|
colorFlip(n);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private static function moveRedRight<K,V>( n :Node<K,V> )
|
|
{
|
|
//borrow extra node from left child (which is a 3-node)
|
|
colorFlip(n);
|
|
if( isRed(n.left.left) )
|
|
{
|
|
n = rotateRight(n);
|
|
colorFlip(n);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private static function fixInvariants<K,V>( n :Node<K,V> )
|
|
{
|
|
if( isRed(n.right) && isBlack(n.left) )
|
|
{
|
|
//ensure left-leaning property
|
|
n = rotateLeft(n);
|
|
}
|
|
if( isRed(n.left) && isRed(n.left.left) )
|
|
{
|
|
//balance 4-node
|
|
n = rotateRight(n);
|
|
}
|
|
if( isRed(n.left) && isRed(n.right) )
|
|
{
|
|
//split 4-node
|
|
colorFlip(n);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private function deleteMinNode<K,V>( n :Node<K,V> )
|
|
{
|
|
if( n.left == null )
|
|
{
|
|
//delete
|
|
--nodeCount;
|
|
return null;
|
|
}
|
|
|
|
if( isBlack(n.left) && isBlack(n.left.left) )
|
|
{
|
|
n = moveRedLeft(n);
|
|
}
|
|
|
|
n.left = deleteMinNode(n.left);
|
|
|
|
return fixInvariants(n);
|
|
}
|
|
|
|
private static function minNode<K,V>( n :Node<K,V> )
|
|
{
|
|
Debug.assert(n != null);
|
|
|
|
while( n.left != null )
|
|
{
|
|
n = n.left;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private static function maxNode<K,V>( n :Node<K,V> )
|
|
{
|
|
Debug.assert(n != null);
|
|
|
|
while( n.right != null )
|
|
{
|
|
n = n.right;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/** Used to verify that the invariants of the tree hold **/
|
|
private inline function assertInvariants()
|
|
{
|
|
#if DEBUG
|
|
Debug.assert( isBlack(root), "root is black: " + root );
|
|
|
|
assertIsTree(root,new List<Node<K,V>>());
|
|
assertBlackNodeCount(root);
|
|
assertBSTOrdering(root,comp);
|
|
#end
|
|
}
|
|
|
|
private static function assertIsTree<K,V>( n: Node<K,V>, visited :List<Node<K,V>> )
|
|
{
|
|
if( n == null )
|
|
{
|
|
return;
|
|
}
|
|
|
|
for( r in visited )
|
|
{
|
|
Debug.assert( n != r );
|
|
}
|
|
visited.push(n);
|
|
assertIsTree(n.left,visited);
|
|
assertIsTree(n.right,visited);
|
|
}
|
|
|
|
private static function assertBlackNodeCount<K,V>( n: Node<K,V> ) :Int
|
|
{
|
|
if( n == null )
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
var leftCount = assertBlackNodeCount(n.left);
|
|
var rightCount = assertBlackNodeCount(n.right);
|
|
|
|
Debug.assert(
|
|
leftCount == rightCount,
|
|
"num of black nodes in all paths for left and right child not equal" + n
|
|
);
|
|
|
|
return leftCount + switch(n.color) {
|
|
case red: 0;
|
|
case black: 1;
|
|
}
|
|
}
|
|
|
|
private static function assertBSTOrdering<K,V>( n: Node<K,V>, compK :K -> K -> Int ) :Void
|
|
{
|
|
if( n == null )
|
|
{
|
|
return;
|
|
}
|
|
|
|
if( n.left != null && n.left.val != null )
|
|
{
|
|
Debug.assert( compK(n.left.key,n.key) < 0, "left child not less than its parent" + n );
|
|
assertBSTOrdering(n.left,compK);
|
|
}
|
|
|
|
if( n.right != null && n.right.val != null )
|
|
{
|
|
Debug.assert( compK(n.key,n.right.key) < 0, "parent not less than its right child" + n );
|
|
assertBSTOrdering(n.right,compK);
|
|
}
|
|
}
|
|
}
|
|
|
|
private enum Color
|
|
{
|
|
red;
|
|
black;
|
|
}
|
|
|
|
private class Node<K,V> /*implements Entry<K,V>*/
|
|
{
|
|
public var left :Null<Node<K,V>>;
|
|
public var right :Null<Node<K,V>>;
|
|
public var color :Color;
|
|
|
|
public var key :K;
|
|
public var val :V;
|
|
|
|
public function new(k :K, v :V)
|
|
{
|
|
key = k;
|
|
val = v;
|
|
color = red;
|
|
}
|
|
}
|
|
|
|
private class NodeIterator<K,V>
|
|
{
|
|
private var curr :Node<K,V>;
|
|
private var fringe :Array<Node<K,V>>;
|
|
|
|
public function new( root :Node<K,V> )
|
|
{
|
|
fringe = new Array<Node<K,V>>();
|
|
traverseToMin(root);
|
|
curr = fringe.pop();
|
|
}
|
|
|
|
public inline function hasNext() :Bool
|
|
{
|
|
return curr != null;
|
|
}
|
|
|
|
public function next() :Node<K,V>
|
|
{
|
|
if( !hasNext() )
|
|
{
|
|
throw new NoSuchElement();
|
|
}
|
|
var ret = curr;
|
|
|
|
if( fringe.length > 0 )
|
|
{
|
|
curr = fringe.pop();
|
|
traverseToMin(curr.right);
|
|
}
|
|
else
|
|
{
|
|
curr = null;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
private function traverseToMin( n :Node<K,V> )
|
|
{
|
|
while( n != null )
|
|
{
|
|
fringe.push(n);
|
|
n = n.left;
|
|
}
|
|
}
|
|
} |