
After go1.16, go will use module mode by default, even when the repository is checked out under GOPATH or in a one-off directory. Add go.mod, go.sum to keep this repo buildable without opting out of the module mode. > go mod init github.com/mmcgrana/gobyexample > go mod tidy > go mod vendor In module mode, the 'vendor' directory is special and its contents will be actively maintained by the go command. pygments aren't the dependency the go will know about, so it will delete the contents from vendor directory. Move it to `third_party` directory now. And, vendor the blackfriday package. Note: the tutorial contents are not affected by the change in go1.16 because all the examples in this tutorial ask users to run the go command with the explicit list of files to be compiled (e.g. `go run hello-world.go` or `go build command-line-arguments.go`). When the source list is provided, the go command does not have to compute the build list and whether it's running in GOPATH mode or module mode becomes irrelevant.
218 lines
6.8 KiB
Plaintext
218 lines
6.8 KiB
Plaintext
/-
|
||
Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant"
|
||
by Robert L. Constable and Anne Trostle
|
||
http://www.nuprl.org/MathLibrary/LogicalInvestigations/
|
||
-/
|
||
import logic
|
||
|
||
-- 2. The Minimal Implicational Calculus
|
||
theorem thm1 {A B : Prop} : A → B → A :=
|
||
assume Ha Hb, Ha
|
||
|
||
theorem thm2 {A B C : Prop} : (A → B) → (A → B → C) → (A → C) :=
|
||
assume Hab Habc Ha,
|
||
Habc Ha (Hab Ha)
|
||
|
||
theorem thm3 {A B C : Prop} : (A → B) → (B → C) → (A → C) :=
|
||
assume Hab Hbc Ha,
|
||
Hbc (Hab Ha)
|
||
|
||
-- 3. False Propositions and Negation
|
||
theorem thm4 {P Q : Prop} : ¬P → P → Q :=
|
||
assume Hnp Hp,
|
||
absurd Hp Hnp
|
||
|
||
theorem thm5 {P : Prop} : P → ¬¬P :=
|
||
assume (Hp : P) (HnP : ¬P),
|
||
absurd Hp HnP
|
||
|
||
theorem thm6 {P Q : Prop} : (P → Q) → (¬Q → ¬P) :=
|
||
assume (Hpq : P → Q) (Hnq : ¬Q) (Hp : P),
|
||
have Hq : Q, from Hpq Hp,
|
||
show false, from absurd Hq Hnq
|
||
|
||
theorem thm7 {P Q : Prop} : (P → ¬P) → (P → Q) :=
|
||
assume Hpnp Hp,
|
||
absurd Hp (Hpnp Hp)
|
||
|
||
theorem thm8 {P Q : Prop} : ¬(P → Q) → (P → ¬Q) :=
|
||
assume (Hn : ¬(P → Q)) (Hp : P) (Hq : Q),
|
||
-- Rermak we don't even need the hypothesis Hp
|
||
have H : P → Q, from assume H', Hq,
|
||
absurd H Hn
|
||
|
||
-- 4. Conjunction and Disjunction
|
||
theorem thm9 {P : Prop} : (P ∨ ¬P) → (¬¬P → P) :=
|
||
assume (em : P ∨ ¬P) (Hnn : ¬¬P),
|
||
or_elim em
|
||
(assume Hp, Hp)
|
||
(assume Hn, absurd Hn Hnn)
|
||
|
||
theorem thm10 {P : Prop} : ¬¬(P ∨ ¬P) :=
|
||
assume Hnem : ¬(P ∨ ¬P),
|
||
have Hnp : ¬P, from
|
||
assume Hp : P,
|
||
have Hem : P ∨ ¬P, from or_inl Hp,
|
||
absurd Hem Hnem,
|
||
have Hem : P ∨ ¬P, from or_inr Hnp,
|
||
absurd Hem Hnem
|
||
|
||
theorem thm11 {P Q : Prop} : ¬P ∨ ¬Q → ¬(P ∧ Q) :=
|
||
assume (H : ¬P ∨ ¬Q) (Hn : P ∧ Q),
|
||
or_elim H
|
||
(assume Hnp : ¬P, absurd (and_elim_left Hn) Hnp)
|
||
(assume Hnq : ¬Q, absurd (and_elim_right Hn) Hnq)
|
||
|
||
theorem thm12 {P Q : Prop} : ¬(P ∨ Q) → ¬P ∧ ¬Q :=
|
||
assume H : ¬(P ∨ Q),
|
||
have Hnp : ¬P, from assume Hp : P, absurd (or_inl Hp) H,
|
||
have Hnq : ¬Q, from assume Hq : Q, absurd (or_inr Hq) H,
|
||
and_intro Hnp Hnq
|
||
|
||
theorem thm13 {P Q : Prop} : ¬P ∧ ¬Q → ¬(P ∨ Q) :=
|
||
assume (H : ¬P ∧ ¬Q) (Hn : P ∨ Q),
|
||
or_elim Hn
|
||
(assume Hp : P, absurd Hp (and_elim_left H))
|
||
(assume Hq : Q, absurd Hq (and_elim_right H))
|
||
|
||
theorem thm14 {P Q : Prop} : ¬P ∨ Q → P → Q :=
|
||
assume (Hor : ¬P ∨ Q) (Hp : P),
|
||
or_elim Hor
|
||
(assume Hnp : ¬P, absurd Hp Hnp)
|
||
(assume Hq : Q, Hq)
|
||
|
||
theorem thm15 {P Q : Prop} : (P → Q) → ¬¬(¬P ∨ Q) :=
|
||
assume (Hpq : P → Q) (Hn : ¬(¬P ∨ Q)),
|
||
have H1 : ¬¬P ∧ ¬Q, from thm12 Hn,
|
||
have Hnp : ¬P, from mt Hpq (and_elim_right H1),
|
||
absurd Hnp (and_elim_left H1)
|
||
|
||
theorem thm16 {P Q : Prop} : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)) → ¬P ∨ Q :=
|
||
assume H : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)),
|
||
have Hpq : P → Q, from and_elim_left H,
|
||
or_elim (and_elim_right H)
|
||
(assume Hem1 : P ∨ ¬P, or_elim Hem1
|
||
(assume Hp : P, or_inr (Hpq Hp))
|
||
(assume Hnp : ¬P, or_inl Hnp))
|
||
(assume Hem2 : Q ∨ ¬Q, or_elim Hem2
|
||
(assume Hq : Q, or_inr Hq)
|
||
(assume Hnq : ¬Q, or_inl (mt Hpq Hnq)))
|
||
|
||
-- 5. First-Order Logic: All and Exists
|
||
section
|
||
parameters {T : Type} {C : Prop} {P : T → Prop}
|
||
theorem thm17a : (C → ∀x, P x) → (∀x, C → P x) :=
|
||
assume H : C → ∀x, P x,
|
||
take x : T, assume Hc : C,
|
||
H Hc x
|
||
|
||
theorem thm17b : (∀x, C → P x) → (C → ∀x, P x) :=
|
||
assume (H : ∀x, C → P x) (Hc : C),
|
||
take x : T,
|
||
H x Hc
|
||
|
||
theorem thm18a : ((∃x, P x) → C) → (∀x, P x → C) :=
|
||
assume H : (∃x, P x) → C,
|
||
take x, assume Hp : P x,
|
||
have Hex : ∃x, P x, from exists_intro x Hp,
|
||
H Hex
|
||
|
||
theorem thm18b : (∀x, P x → C) → (∃x, P x) → C :=
|
||
assume (H1 : ∀x, P x → C) (H2 : ∃x, P x),
|
||
obtain (w : T) (Hw : P w), from H2,
|
||
H1 w Hw
|
||
|
||
theorem thm19a : (C ∨ ¬C) → (∃x : T, true) → (C → (∃x, P x)) → (∃x, C → P x) :=
|
||
assume (Hem : C ∨ ¬C) (Hin : ∃x : T, true) (H1 : C → ∃x, P x),
|
||
or_elim Hem
|
||
(assume Hc : C,
|
||
obtain (w : T) (Hw : P w), from H1 Hc,
|
||
have Hr : C → P w, from assume Hc, Hw,
|
||
exists_intro w Hr)
|
||
(assume Hnc : ¬C,
|
||
obtain (w : T) (Hw : true), from Hin,
|
||
have Hr : C → P w, from assume Hc, absurd Hc Hnc,
|
||
exists_intro w Hr)
|
||
|
||
theorem thm19b : (∃x, C → P x) → C → (∃x, P x) :=
|
||
assume (H : ∃x, C → P x) (Hc : C),
|
||
obtain (w : T) (Hw : C → P w), from H,
|
||
exists_intro w (Hw Hc)
|
||
|
||
theorem thm20a : (C ∨ ¬C) → (∃x : T, true) → ((¬∀x, P x) → ∃x, ¬P x) → ((∀x, P x) → C) → (∃x, P x → C) :=
|
||
assume Hem Hin Hnf H,
|
||
or_elim Hem
|
||
(assume Hc : C,
|
||
obtain (w : T) (Hw : true), from Hin,
|
||
exists_intro w (assume H : P w, Hc))
|
||
(assume Hnc : ¬C,
|
||
have H1 : ¬(∀x, P x), from mt H Hnc,
|
||
have H2 : ∃x, ¬P x, from Hnf H1,
|
||
obtain (w : T) (Hw : ¬P w), from H2,
|
||
exists_intro w (assume H : P w, absurd H Hw))
|
||
|
||
theorem thm20b : (∃x, P x → C) → (∀ x, P x) → C :=
|
||
assume Hex Hall,
|
||
obtain (w : T) (Hw : P w → C), from Hex,
|
||
Hw (Hall w)
|
||
|
||
theorem thm21a : (∃x : T, true) → ((∃x, P x) ∨ C) → (∃x, P x ∨ C) :=
|
||
assume Hin H,
|
||
or_elim H
|
||
(assume Hex : ∃x, P x,
|
||
obtain (w : T) (Hw : P w), from Hex,
|
||
exists_intro w (or_inl Hw))
|
||
(assume Hc : C,
|
||
obtain (w : T) (Hw : true), from Hin,
|
||
exists_intro w (or_inr Hc))
|
||
|
||
theorem thm21b : (∃x, P x ∨ C) → ((∃x, P x) ∨ C) :=
|
||
assume H,
|
||
obtain (w : T) (Hw : P w ∨ C), from H,
|
||
or_elim Hw
|
||
(assume H : P w, or_inl (exists_intro w H))
|
||
(assume Hc : C, or_inr Hc)
|
||
|
||
theorem thm22a : (∀x, P x) ∨ C → ∀x, P x ∨ C :=
|
||
assume H, take x,
|
||
or_elim H
|
||
(assume Hl, or_inl (Hl x))
|
||
(assume Hr, or_inr Hr)
|
||
|
||
theorem thm22b : (C ∨ ¬C) → (∀x, P x ∨ C) → ((∀x, P x) ∨ C) :=
|
||
assume Hem H1,
|
||
or_elim Hem
|
||
(assume Hc : C, or_inr Hc)
|
||
(assume Hnc : ¬C,
|
||
have Hx : ∀x, P x, from
|
||
take x,
|
||
have H1 : P x ∨ C, from H1 x,
|
||
resolve_left H1 Hnc,
|
||
or_inl Hx)
|
||
|
||
theorem thm23a : (∃x, P x) ∧ C → (∃x, P x ∧ C) :=
|
||
assume H,
|
||
have Hex : ∃x, P x, from and_elim_left H,
|
||
have Hc : C, from and_elim_right H,
|
||
obtain (w : T) (Hw : P w), from Hex,
|
||
exists_intro w (and_intro Hw Hc)
|
||
|
||
theorem thm23b : (∃x, P x ∧ C) → (∃x, P x) ∧ C :=
|
||
assume H,
|
||
obtain (w : T) (Hw : P w ∧ C), from H,
|
||
have Hex : ∃x, P x, from exists_intro w (and_elim_left Hw),
|
||
and_intro Hex (and_elim_right Hw)
|
||
|
||
theorem thm24a : (∀x, P x) ∧ C → (∀x, P x ∧ C) :=
|
||
assume H, take x,
|
||
and_intro (and_elim_left H x) (and_elim_right H)
|
||
|
||
theorem thm24b : (∃x : T, true) → (∀x, P x ∧ C) → (∀x, P x) ∧ C :=
|
||
assume Hin H,
|
||
obtain (w : T) (Hw : true), from Hin,
|
||
have Hc : C, from and_elim_right (H w),
|
||
have Hx : ∀x, P x, from take x, and_elim_left (H x),
|
||
and_intro Hx Hc
|
||
|
||
end -- of section
|