448 lines
15 KiB
Plaintext
448 lines
15 KiB
Plaintext
(* -*- coding: utf-8 -*- *)
|
|
(************************************************************************)
|
|
(* v * The Coq Proof Assistant / The Coq Development Team *)
|
|
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
|
|
(* \VV/ **************************************************************)
|
|
(* // * This file is distributed under the terms of the *)
|
|
(* * GNU Lesser General Public License Version 2.1 *)
|
|
(************************************************************************)
|
|
|
|
(** * Typeclass-based relations, tactics and standard instances
|
|
|
|
This is the basic theory needed to formalize morphisms and setoids.
|
|
|
|
Author: Matthieu Sozeau
|
|
Institution: LRI, CNRS UMR 8623 - University Paris Sud
|
|
*)
|
|
|
|
(* $Id: RelationClasses.v 14641 2011-11-06 11:59:10Z herbelin $ *)
|
|
|
|
Require Export Coq.Classes.Init.
|
|
Require Import Coq.Program.Basics.
|
|
Require Import Coq.Program.Tactics.
|
|
Require Import Coq.Relations.Relation_Definitions.
|
|
|
|
(** We allow to unfold the [relation] definition while doing morphism search. *)
|
|
|
|
Notation inverse R := (flip (R:relation _) : relation _).
|
|
|
|
Definition complement {A} (R : relation A) : relation A := fun x y => R x y -> False.
|
|
|
|
(** Opaque for proof-search. *)
|
|
Typeclasses Opaque complement.
|
|
|
|
(** These are convertible. *)
|
|
|
|
Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R).
|
|
Proof. reflexivity. Qed.
|
|
|
|
(** We rebind relations in separate classes to be able to overload each proof. *)
|
|
|
|
Set Implicit Arguments.
|
|
Unset Strict Implicit.
|
|
|
|
Class Reflexive {A} (R : relation A) :=
|
|
reflexivity : forall x, R x x.
|
|
|
|
Class Irreflexive {A} (R : relation A) :=
|
|
irreflexivity : Reflexive (complement R).
|
|
|
|
Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances.
|
|
|
|
Class Symmetric {A} (R : relation A) :=
|
|
symmetry : forall x y, R x y -> R y x.
|
|
|
|
Class Asymmetric {A} (R : relation A) :=
|
|
asymmetry : forall x y, R x y -> R y x -> False.
|
|
|
|
Class Transitive {A} (R : relation A) :=
|
|
transitivity : forall x y z, R x y -> R y z -> R x z.
|
|
|
|
Hint Resolve @irreflexivity : ord.
|
|
|
|
Unset Implicit Arguments.
|
|
|
|
(** A HintDb for relations. *)
|
|
|
|
Ltac solve_relation :=
|
|
match goal with
|
|
| [ |- ?R ?x ?x ] => reflexivity
|
|
| [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H
|
|
end.
|
|
|
|
Hint Extern 4 => solve_relation : relations.
|
|
|
|
(** We can already dualize all these properties. *)
|
|
|
|
Generalizable Variables A B C D R S T U l eqA eqB eqC eqD.
|
|
|
|
Lemma flip_Reflexive `{Reflexive A R} : Reflexive (flip R).
|
|
Proof. tauto. Qed.
|
|
|
|
Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances.
|
|
|
|
Program Definition flip_Irreflexive `(Irreflexive A R) : Irreflexive (flip R) :=
|
|
irreflexivity (R:=R).
|
|
|
|
Program Definition flip_Symmetric `(Symmetric A R) : Symmetric (flip R) :=
|
|
fun x y H => symmetry (R:=R) H.
|
|
|
|
Program Definition flip_Asymmetric `(Asymmetric A R) : Asymmetric (flip R) :=
|
|
fun x y H H' => asymmetry (R:=R) H H'.
|
|
|
|
Program Definition flip_Transitive `(Transitive A R) : Transitive (flip R) :=
|
|
fun x y z H H' => transitivity (R:=R) H' H.
|
|
|
|
Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances.
|
|
Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances.
|
|
Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances.
|
|
Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances.
|
|
|
|
Definition Reflexive_complement_Irreflexive `(Reflexive A (R : relation A))
|
|
: Irreflexive (complement R).
|
|
Proof. firstorder. Qed.
|
|
|
|
Definition complement_Symmetric `(Symmetric A (R : relation A)) : Symmetric (complement R).
|
|
Proof. firstorder. Qed.
|
|
|
|
Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances.
|
|
Hint Extern 3 (Irreflexive (complement _)) => class_apply Reflexive_complement_Irreflexive : typeclass_instances.
|
|
|
|
(** * Standard instances. *)
|
|
|
|
Ltac reduce_hyp H :=
|
|
match type of H with
|
|
| context [ _ <-> _ ] => fail 1
|
|
| _ => red in H ; try reduce_hyp H
|
|
end.
|
|
|
|
Ltac reduce_goal :=
|
|
match goal with
|
|
| [ |- _ <-> _ ] => fail 1
|
|
| _ => red ; intros ; try reduce_goal
|
|
end.
|
|
|
|
Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
|
|
|
|
Ltac reduce := reduce_goal.
|
|
|
|
Tactic Notation "apply" "*" constr(t) :=
|
|
first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
|
|
refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
|
|
|
|
Ltac simpl_relation :=
|
|
unfold flip, impl, arrow ; try reduce ; program_simpl ;
|
|
try ( solve [ intuition ]).
|
|
|
|
Local Obligation Tactic := simpl_relation.
|
|
|
|
(** Logical implication. *)
|
|
|
|
Program Instance impl_Reflexive : Reflexive impl.
|
|
Program Instance impl_Transitive : Transitive impl.
|
|
|
|
(** Logical equivalence. *)
|
|
|
|
Program Instance iff_Reflexive : Reflexive iff.
|
|
Program Instance iff_Symmetric : Symmetric iff.
|
|
Program Instance iff_Transitive : Transitive iff.
|
|
|
|
(** Leibniz equality. *)
|
|
|
|
Instance eq_Reflexive {A} : Reflexive (@eq A) := @eq_refl A.
|
|
Instance eq_Symmetric {A} : Symmetric (@eq A) := @eq_sym A.
|
|
Instance eq_Transitive {A} : Transitive (@eq A) := @eq_trans A.
|
|
|
|
(** Various combinations of reflexivity, symmetry and transitivity. *)
|
|
|
|
(** A [PreOrder] is both Reflexive and Transitive. *)
|
|
|
|
Class PreOrder {A} (R : relation A) : Prop := {
|
|
PreOrder_Reflexive :> Reflexive R ;
|
|
PreOrder_Transitive :> Transitive R }.
|
|
|
|
(** A partial equivalence relation is Symmetric and Transitive. *)
|
|
|
|
Class PER {A} (R : relation A) : Prop := {
|
|
PER_Symmetric :> Symmetric R ;
|
|
PER_Transitive :> Transitive R }.
|
|
|
|
(** Equivalence relations. *)
|
|
|
|
Class Equivalence {A} (R : relation A) : Prop := {
|
|
Equivalence_Reflexive :> Reflexive R ;
|
|
Equivalence_Symmetric :> Symmetric R ;
|
|
Equivalence_Transitive :> Transitive R }.
|
|
|
|
(** An Equivalence is a PER plus reflexivity. *)
|
|
|
|
Instance Equivalence_PER `(Equivalence A R) : PER R | 10 :=
|
|
{ PER_Symmetric := Equivalence_Symmetric ;
|
|
PER_Transitive := Equivalence_Transitive }.
|
|
|
|
(** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *)
|
|
|
|
Class Antisymmetric A eqA `{equ : Equivalence A eqA} (R : relation A) :=
|
|
antisymmetry : forall {x y}, R x y -> R y x -> eqA x y.
|
|
|
|
Program Definition flip_antiSymmetric `(Antisymmetric A eqA R) :
|
|
Antisymmetric A eqA (flip R).
|
|
Proof. firstorder. Qed.
|
|
|
|
(** Leibinz equality [eq] is an equivalence relation.
|
|
The instance has low priority as it is always applicable
|
|
if only the type is constrained. *)
|
|
|
|
Program Instance eq_equivalence : Equivalence (@eq A) | 10.
|
|
|
|
(** Logical equivalence [iff] is an equivalence relation. *)
|
|
|
|
Program Instance iff_equivalence : Equivalence iff.
|
|
|
|
(** We now develop a generalization of results on relations for arbitrary predicates.
|
|
The resulting theory can be applied to homogeneous binary relations but also to
|
|
arbitrary n-ary predicates. *)
|
|
|
|
Local Open Scope list_scope.
|
|
|
|
(* Notation " [ ] " := nil : list_scope. *)
|
|
(* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *)
|
|
|
|
(** A compact representation of non-dependent arities, with the codomain singled-out. *)
|
|
|
|
Fixpoint arrows (l : list Type) (r : Type) : Type :=
|
|
match l with
|
|
| nil => r
|
|
| A :: l' => A -> arrows l' r
|
|
end.
|
|
|
|
(** We can define abbreviations for operation and relation types based on [arrows]. *)
|
|
|
|
Definition unary_operation A := arrows (A::nil) A.
|
|
Definition binary_operation A := arrows (A::A::nil) A.
|
|
Definition ternary_operation A := arrows (A::A::A::nil) A.
|
|
|
|
(** We define n-ary [predicate]s as functions into [Prop]. *)
|
|
|
|
Notation predicate l := (arrows l Prop).
|
|
|
|
(** Unary predicates, or sets. *)
|
|
|
|
Definition unary_predicate A := predicate (A::nil).
|
|
|
|
(** Homogeneous binary relations, equivalent to [relation A]. *)
|
|
|
|
Definition binary_relation A := predicate (A::A::nil).
|
|
|
|
(** We can close a predicate by universal or existential quantification. *)
|
|
|
|
Fixpoint predicate_all (l : list Type) : predicate l -> Prop :=
|
|
match l with
|
|
| nil => fun f => f
|
|
| A :: tl => fun f => forall x : A, predicate_all tl (f x)
|
|
end.
|
|
|
|
Fixpoint predicate_exists (l : list Type) : predicate l -> Prop :=
|
|
match l with
|
|
| nil => fun f => f
|
|
| A :: tl => fun f => exists x : A, predicate_exists tl (f x)
|
|
end.
|
|
|
|
(** Pointwise extension of a binary operation on [T] to a binary operation
|
|
on functions whose codomain is [T].
|
|
For an operator on [Prop] this lifts the operator to a binary operation. *)
|
|
|
|
Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
|
|
(l : list Type) : binary_operation (arrows l T) :=
|
|
match l with
|
|
| nil => fun R R' => op R R'
|
|
| A :: tl => fun R R' =>
|
|
fun x => pointwise_extension op tl (R x) (R' x)
|
|
end.
|
|
|
|
(** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *)
|
|
|
|
Fixpoint pointwise_lifting (op : binary_relation Prop) (l : list Type) : binary_relation (predicate l) :=
|
|
match l with
|
|
| nil => fun R R' => op R R'
|
|
| A :: tl => fun R R' =>
|
|
forall x, pointwise_lifting op tl (R x) (R' x)
|
|
end.
|
|
|
|
(** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *)
|
|
|
|
Definition predicate_equivalence {l : list Type} : binary_relation (predicate l) :=
|
|
pointwise_lifting iff l.
|
|
|
|
(** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *)
|
|
|
|
Definition predicate_implication {l : list Type} :=
|
|
pointwise_lifting impl l.
|
|
|
|
(** Notations for pointwise equivalence and implication of predicates. *)
|
|
|
|
Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
|
|
Infix "-∙>" := predicate_implication (at level 70, right associativity) : predicate_scope.
|
|
|
|
Open Local Scope predicate_scope.
|
|
|
|
(** The pointwise liftings of conjunction and disjunctions.
|
|
Note that these are [binary_operation]s, building new relations out of old ones. *)
|
|
|
|
Definition predicate_intersection := pointwise_extension and.
|
|
Definition predicate_union := pointwise_extension or.
|
|
|
|
Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
|
|
Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
|
|
|
|
(** The always [True] and always [False] predicates. *)
|
|
|
|
Fixpoint true_predicate {l : list Type} : predicate l :=
|
|
match l with
|
|
| nil => True
|
|
| A :: tl => fun _ => @true_predicate tl
|
|
end.
|
|
|
|
Fixpoint false_predicate {l : list Type} : predicate l :=
|
|
match l with
|
|
| nil => False
|
|
| A :: tl => fun _ => @false_predicate tl
|
|
end.
|
|
|
|
Notation "∙⊤∙" := true_predicate : predicate_scope.
|
|
Notation "∙⊥∙" := false_predicate : predicate_scope.
|
|
|
|
(** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *)
|
|
|
|
Program Instance predicate_equivalence_equivalence : Equivalence (@predicate_equivalence l).
|
|
Next Obligation.
|
|
induction l ; firstorder.
|
|
Qed.
|
|
Next Obligation.
|
|
induction l ; firstorder.
|
|
Qed.
|
|
Next Obligation.
|
|
fold pointwise_lifting.
|
|
induction l. firstorder.
|
|
intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)).
|
|
firstorder.
|
|
Qed.
|
|
|
|
Program Instance predicate_implication_preorder :
|
|
PreOrder (@predicate_implication l).
|
|
Next Obligation.
|
|
induction l ; firstorder.
|
|
Qed.
|
|
Next Obligation.
|
|
induction l. firstorder.
|
|
unfold predicate_implication in *. simpl in *.
|
|
intro. pose (IHl (x x0) (y x0) (z x0)). firstorder.
|
|
Qed.
|
|
|
|
(** We define the various operations which define the algebra on binary relations,
|
|
from the general ones. *)
|
|
|
|
Definition relation_equivalence {A : Type} : relation (relation A) :=
|
|
@predicate_equivalence (_::_::nil).
|
|
|
|
Class subrelation {A:Type} (R R' : relation A) : Prop :=
|
|
is_subrelation : @predicate_implication (A::A::nil) R R'.
|
|
|
|
Implicit Arguments subrelation [[A]].
|
|
|
|
Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A :=
|
|
@predicate_intersection (A::A::nil) R R'.
|
|
|
|
Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A :=
|
|
@predicate_union (A::A::nil) R R'.
|
|
|
|
(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
|
|
|
|
Set Automatic Introduction.
|
|
|
|
Instance relation_equivalence_equivalence (A : Type) :
|
|
Equivalence (@relation_equivalence A).
|
|
Proof. exact (@predicate_equivalence_equivalence (A::A::nil)). Qed.
|
|
|
|
Instance relation_implication_preorder A : PreOrder (@subrelation A).
|
|
Proof. exact (@predicate_implication_preorder (A::A::nil)). Qed.
|
|
|
|
(** *** Partial Order.
|
|
A partial order is a preorder which is additionally antisymmetric.
|
|
We give an equivalent definition, up-to an equivalence relation
|
|
on the carrier. *)
|
|
|
|
Class PartialOrder {A} eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
|
|
partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)).
|
|
|
|
(** The equivalence proof is sufficient for proving that [R] must be a morphism
|
|
for equivalence (see Morphisms).
|
|
It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *)
|
|
|
|
Instance partial_order_antisym `(PartialOrder A eqA R) : ! Antisymmetric A eqA R.
|
|
Proof with auto.
|
|
reduce_goal.
|
|
pose proof partial_order_equivalence as poe. do 3 red in poe.
|
|
apply <- poe. firstorder.
|
|
Qed.
|
|
|
|
(** The partial order defined by subrelation and relation equivalence. *)
|
|
|
|
Program Instance subrelation_partial_order :
|
|
! PartialOrder (relation A) relation_equivalence subrelation.
|
|
|
|
Next Obligation.
|
|
Proof.
|
|
unfold relation_equivalence in *. firstorder.
|
|
Qed.
|
|
|
|
Typeclasses Opaque arrows predicate_implication predicate_equivalence
|
|
relation_equivalence pointwise_lifting.
|
|
|
|
(** Rewrite relation on a given support: declares a relation as a rewrite
|
|
relation for use by the generalized rewriting tactic.
|
|
It helps choosing if a rewrite should be handled
|
|
by the generalized or the regular rewriting tactic using leibniz equality.
|
|
Users can declare an [RewriteRelation A RA] anywhere to declare default
|
|
relations. This is also done automatically by the [Declare Relation A RA]
|
|
commands. *)
|
|
|
|
Class RewriteRelation {A : Type} (RA : relation A).
|
|
|
|
Instance: RewriteRelation impl.
|
|
Instance: RewriteRelation iff.
|
|
Instance: RewriteRelation (@relation_equivalence A).
|
|
|
|
(** Any [Equivalence] declared in the context is automatically considered
|
|
a rewrite relation. *)
|
|
|
|
Instance equivalence_rewrite_relation `(Equivalence A eqA) : RewriteRelation eqA.
|
|
|
|
(** Strict Order *)
|
|
|
|
Class StrictOrder {A : Type} (R : relation A) := {
|
|
StrictOrder_Irreflexive :> Irreflexive R ;
|
|
StrictOrder_Transitive :> Transitive R
|
|
}.
|
|
|
|
Instance StrictOrder_Asymmetric `(StrictOrder A R) : Asymmetric R.
|
|
Proof. firstorder. Qed.
|
|
|
|
(** Inversing a [StrictOrder] gives another [StrictOrder] *)
|
|
|
|
Lemma StrictOrder_inverse `(StrictOrder A R) : StrictOrder (inverse R).
|
|
Proof. firstorder. Qed.
|
|
|
|
(** Same for [PartialOrder]. *)
|
|
|
|
Lemma PreOrder_inverse `(PreOrder A R) : PreOrder (inverse R).
|
|
Proof. firstorder. Qed.
|
|
|
|
Hint Extern 3 (StrictOrder (inverse _)) => class_apply StrictOrder_inverse : typeclass_instances.
|
|
Hint Extern 3 (PreOrder (inverse _)) => class_apply PreOrder_inverse : typeclass_instances.
|
|
|
|
Lemma PartialOrder_inverse `(PartialOrder A eqA R) : PartialOrder eqA (inverse R).
|
|
Proof. firstorder. Qed.
|
|
|
|
Hint Extern 3 (PartialOrder (inverse _)) => class_apply PartialOrder_inverse : typeclass_instances.
|