
After go1.16, go will use module mode by default, even when the repository is checked out under GOPATH or in a one-off directory. Add go.mod, go.sum to keep this repo buildable without opting out of the module mode. > go mod init github.com/mmcgrana/gobyexample > go mod tidy > go mod vendor In module mode, the 'vendor' directory is special and its contents will be actively maintained by the go command. pygments aren't the dependency the go will know about, so it will delete the contents from vendor directory. Move it to `third_party` directory now. And, vendor the blackfriday package. Note: the tutorial contents are not affected by the change in go1.16 because all the examples in this tutorial ask users to run the go command with the explicit list of files to be compiled (e.g. `go run hello-world.go` or `go build command-line-arguments.go`). When the source list is provided, the go command does not have to compute the build list and whether it's running in GOPATH mode or module mode becomes irrelevant.
132 lines
10 KiB
Plaintext
132 lines
10 KiB
Plaintext
// example file for roundedpath() in roundedpath.asy
|
|
// written by stefan knorr
|
|
|
|
|
|
// import needed packages
|
|
import roundedpath;
|
|
|
|
// function definition
|
|
picture CreateKOOS(real Scale, string legend) // draw labeled coordinate system as picture
|
|
{
|
|
picture ReturnPic;
|
|
real S = 1.2*Scale;
|
|
draw(ReturnPic, ((-S,0)--(S,0)), bar = EndArrow); // x axis
|
|
draw(ReturnPic, ((0,-S)--(0,S)), bar = EndArrow); // y axis
|
|
label(ReturnPic, "$\varepsilon$", (S,0), SW); // x axis label
|
|
label(ReturnPic, "$\sigma$", (0,S), SW); // y axis label
|
|
label(ReturnPic, legend, (0.7S, -S), NW); // add label 'legend'
|
|
return ReturnPic; // return picture
|
|
}
|
|
|
|
|
|
// some global definitions
|
|
real S = 13mm; // universal scale factor for the whole file
|
|
real grad = 0.25; // gradient for lines
|
|
real radius = 0.04; // radius for the rounded path'
|
|
real lw = 2; // linewidth
|
|
pair A = (-1, -1); // start point for graphs
|
|
pair E = ( 1, 1); // end point for graphs
|
|
path graph; // local graph
|
|
pen ActPen; // actual pen for each drawing
|
|
picture T[]; // vector of all four diagrams
|
|
real inc = 2.8; // increment-offset for combining pictures
|
|
|
|
//////////////////////////////////////// 1st diagram
|
|
T[1] = CreateKOOS(S, "$T_1$"); // initialise T[1] as empty diagram with label $T_1$
|
|
graph = A; // # pointwise definition of current path 'graph'
|
|
graph = graph -- (A.x + grad*1.6, A.y + 1.6); // #
|
|
graph = graph -- (E.x - grad*0.4, E.y - 0.4); // #
|
|
graph = graph -- E; // #
|
|
|
|
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
|
|
ActPen = rgb(0,0,0.6) + linewidth(lw); // define pen for drawing in 1st diagram
|
|
draw(T[1], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[1]' (1st hysteresis branch)
|
|
draw(T[1], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
|
|
|
|
graph = (0,0) -- (grad*0.6, 0.6) -- ( (grad*0.6, 0.6) + (0.1, 0) ); // define branch from origin to hysteresis
|
|
graph = roundedpath(graph, radius, S); // round this path
|
|
draw(T[1], graph, ActPen); // draw this path into 'T[1]'
|
|
|
|
|
|
//////////////////////////////////////// 2nd diagram
|
|
T[2] = CreateKOOS(S, "$T_2$"); // initialise T[2] as empty diagram with label $T_2$
|
|
graph = A; // # pointwise definition of current path 'graph'
|
|
graph = graph -- (A.x + grad*1.3, A.y + 1.3); // #
|
|
graph = graph -- (E.x - grad*0.7 , E.y - 0.7); // #
|
|
graph = graph -- E; // #
|
|
|
|
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
|
|
ActPen = rgb(0.2,0,0.4) + linewidth(lw); // define pen for drawing in 2nd diagram
|
|
draw(T[2], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[2]' (1st hysteresis branch)
|
|
draw(T[2], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
|
|
|
|
graph = (0,0) -- (grad*0.3, 0.3) -- ( (grad*0.3, 0.3) + (0.1, 0) ); // define branch from origin to hysteresis
|
|
graph = roundedpath(graph, radius, S); // round this path
|
|
draw(T[2], graph, ActPen); // draw this path into 'T[2]'
|
|
|
|
|
|
//////////////////////////////////////// 3rd diagram
|
|
T[3] = CreateKOOS(S, "$T_3$"); // initialise T[3] as empty diagram with label $T_3$
|
|
graph = A; // # pointwise definition of current path 'graph'
|
|
graph = graph -- (A.x + grad*0.7, A.y + 0.7); // #
|
|
graph = graph -- ( - grad*0.3 , - 0.3); // #
|
|
graph = graph -- (0,0); // #
|
|
graph = graph -- (grad*0.6, 0.6); // #
|
|
graph = graph -- (E.x - grad*0.4, E.y - 0.4); // #
|
|
graph = graph -- E; // #
|
|
|
|
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
|
|
ActPen = rgb(0.6,0,0.2) + linewidth(lw); // define pen for drawing in 3rd diagram
|
|
draw(T[3], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[3]' (1st hysteresis branch)
|
|
draw(T[3], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
|
|
|
|
|
|
//////////////////////////////////////// 4th diagram
|
|
T[4] = CreateKOOS(S, "$T_4$"); // initialise T[4] as empty diagram with label $T_4$
|
|
graph = A; // # pointwise definition of current path 'graph'
|
|
graph = graph -- (A.x + grad*0.4, A.y + 0.4); // #
|
|
graph = graph -- ( - grad*0.6 , - 0.6); // #
|
|
graph = graph -- (0,0); // #
|
|
graph = graph -- (grad*0.9, 0.9); // #
|
|
graph = graph -- (E.x - grad*0.1, E.y - 0.1); // #
|
|
graph = graph -- E; // #
|
|
|
|
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
|
|
ActPen = rgb(0.6,0,0) + linewidth(lw); // define pen for drawing in 4th diagram
|
|
draw(T[4], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[4]' (1st hysteresis branch)
|
|
draw(T[4], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (3nd hysteresis branch)
|
|
|
|
|
|
// add some labels and black dots to the first two pictures
|
|
pair SWW = (-0.8, -0.6);
|
|
label(T[1], "$\sigma_f$", (0, 0.6S), NE); // sigma_f
|
|
draw(T[1], (0, 0.6S), linewidth(3) + black);
|
|
label(T[2], "$\sigma_f$", (0, 0.3S), NE); // sigma_f
|
|
draw(T[2], (0, 0.3S), linewidth(3) + black);
|
|
label(T[1], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p
|
|
draw(T[1], (0.75S, 0), linewidth(3) + black);
|
|
label(T[2], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p
|
|
draw(T[2], (0.75S, 0), linewidth(3) + black);
|
|
|
|
|
|
// add all pictures T[1...4] to the current one
|
|
add(T[1],(0,0));
|
|
add(T[2],(1*inc*S,0));
|
|
add(T[3],(2*inc*S,0));
|
|
add(T[4],(3*inc*S,0));
|
|
|
|
|
|
// draw line of constant \sigma and all intersection points with the graphs in T[1...4]
|
|
ActPen = linewidth(1) + dashed + gray(0.5); // pen definition
|
|
draw((-S, 0.45*S)--((3*inc+1)*S, 0.45*S), ActPen); // draw backgoundline
|
|
label("$\sigma_s$", (-S, 0.45S), W); // label 'sigma_s'
|
|
|
|
path mark = scale(2)*unitcircle; // define mark-symbol to be used for intersections
|
|
ActPen = linewidth(1) + gray(0.5); // define pen for intersection mark
|
|
draw(shift(( 1 - grad*0.55 + 0*inc)*S, 0.45*S)*mark, ActPen); // # draw all intersections
|
|
draw(shift((-1 + grad*1.45 + 0*inc)*S, 0.45*S)*mark, ActPen); // #
|
|
draw(shift(( 1 - grad*0.55 + 1*inc)*S, 0.45*S)*mark, ActPen); // #
|
|
draw(shift(( 1 - grad*0.55 + 2*inc)*S, 0.45*S)*mark, ActPen); // #
|
|
draw(shift(( grad*0.45 + 2*inc)*S, 0.45*S)*mark, ActPen); // #
|
|
draw(shift(( grad*0.45 + 3*inc)*S, 0.45*S)*mark, ActPen); // #
|