vendor: clean up dependencies (remove unused ones)

This commit is contained in:
Gyu-Ho Lee 2016-10-10 11:02:13 -07:00
parent def1a3b77f
commit b9f3ef09e1
8 changed files with 15 additions and 1324 deletions

View File

@ -1,44 +0,0 @@
package main
import (
"flag"
"fmt"
"io/ioutil"
"os"
"github.com/cpuguy83/go-md2man/md2man"
)
var inFilePath = flag.String("in", "", "Path to file to be processed")
var outFilePath = flag.String("out", "", "Path to output processed file")
func main() {
flag.Parse()
inFile, err := os.Open(*inFilePath)
if err != nil {
fmt.Println(err)
os.Exit(1)
}
defer inFile.Close()
doc, err := ioutil.ReadAll(inFile)
if err != nil {
fmt.Println(err)
os.Exit(1)
}
out := md2man.Render(doc)
outFile, err := os.Create(*outFilePath)
if err != nil {
fmt.Println(err)
os.Exit(1)
}
defer outFile.Close()
_, err = outFile.Write(out)
if err != nil {
fmt.Println(err)
os.Exit(1)
}
}

View File

@ -1,160 +0,0 @@
/*
Copyright 2012 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package groupcache
import (
"bytes"
"errors"
"io"
"strings"
)
// A ByteView holds an immutable view of bytes.
// Internally it wraps either a []byte or a string,
// but that detail is invisible to callers.
//
// A ByteView is meant to be used as a value type, not
// a pointer (like a time.Time).
type ByteView struct {
// If b is non-nil, b is used, else s is used.
b []byte
s string
}
// Len returns the view's length.
func (v ByteView) Len() int {
if v.b != nil {
return len(v.b)
}
return len(v.s)
}
// ByteSlice returns a copy of the data as a byte slice.
func (v ByteView) ByteSlice() []byte {
if v.b != nil {
return cloneBytes(v.b)
}
return []byte(v.s)
}
// String returns the data as a string, making a copy if necessary.
func (v ByteView) String() string {
if v.b != nil {
return string(v.b)
}
return v.s
}
// At returns the byte at index i.
func (v ByteView) At(i int) byte {
if v.b != nil {
return v.b[i]
}
return v.s[i]
}
// Slice slices the view between the provided from and to indices.
func (v ByteView) Slice(from, to int) ByteView {
if v.b != nil {
return ByteView{b: v.b[from:to]}
}
return ByteView{s: v.s[from:to]}
}
// SliceFrom slices the view from the provided index until the end.
func (v ByteView) SliceFrom(from int) ByteView {
if v.b != nil {
return ByteView{b: v.b[from:]}
}
return ByteView{s: v.s[from:]}
}
// Copy copies b into dest and returns the number of bytes copied.
func (v ByteView) Copy(dest []byte) int {
if v.b != nil {
return copy(dest, v.b)
}
return copy(dest, v.s)
}
// Equal returns whether the bytes in b are the same as the bytes in
// b2.
func (v ByteView) Equal(b2 ByteView) bool {
if b2.b == nil {
return v.EqualString(b2.s)
}
return v.EqualBytes(b2.b)
}
// EqualString returns whether the bytes in b are the same as the bytes
// in s.
func (v ByteView) EqualString(s string) bool {
if v.b == nil {
return v.s == s
}
l := v.Len()
if len(s) != l {
return false
}
for i, bi := range v.b {
if bi != s[i] {
return false
}
}
return true
}
// EqualBytes returns whether the bytes in b are the same as the bytes
// in b2.
func (v ByteView) EqualBytes(b2 []byte) bool {
if v.b != nil {
return bytes.Equal(v.b, b2)
}
l := v.Len()
if len(b2) != l {
return false
}
for i, bi := range b2 {
if bi != v.s[i] {
return false
}
}
return true
}
// Reader returns an io.ReadSeeker for the bytes in v.
func (v ByteView) Reader() io.ReadSeeker {
if v.b != nil {
return bytes.NewReader(v.b)
}
return strings.NewReader(v.s)
}
// ReadAt implements io.ReaderAt on the bytes in v.
func (v ByteView) ReadAt(p []byte, off int64) (n int, err error) {
if off < 0 {
return 0, errors.New("view: invalid offset")
}
if off >= int64(v.Len()) {
return 0, io.EOF
}
n = v.SliceFrom(int(off)).Copy(p)
if n < len(p) {
err = io.EOF
}
return
}

View File

@ -1,489 +0,0 @@
/*
Copyright 2012 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Package groupcache provides a data loading mechanism with caching
// and de-duplication that works across a set of peer processes.
//
// Each data Get first consults its local cache, otherwise delegates
// to the requested key's canonical owner, which then checks its cache
// or finally gets the data. In the common case, many concurrent
// cache misses across a set of peers for the same key result in just
// one cache fill.
package groupcache
import (
"errors"
"math/rand"
"strconv"
"sync"
"sync/atomic"
pb "github.com/golang/groupcache/groupcachepb"
"github.com/golang/groupcache/lru"
"github.com/golang/groupcache/singleflight"
)
// A Getter loads data for a key.
type Getter interface {
// Get returns the value identified by key, populating dest.
//
// The returned data must be unversioned. That is, key must
// uniquely describe the loaded data, without an implicit
// current time, and without relying on cache expiration
// mechanisms.
Get(ctx Context, key string, dest Sink) error
}
// A GetterFunc implements Getter with a function.
type GetterFunc func(ctx Context, key string, dest Sink) error
func (f GetterFunc) Get(ctx Context, key string, dest Sink) error {
return f(ctx, key, dest)
}
var (
mu sync.RWMutex
groups = make(map[string]*Group)
initPeerServerOnce sync.Once
initPeerServer func()
)
// GetGroup returns the named group previously created with NewGroup, or
// nil if there's no such group.
func GetGroup(name string) *Group {
mu.RLock()
g := groups[name]
mu.RUnlock()
return g
}
// NewGroup creates a coordinated group-aware Getter from a Getter.
//
// The returned Getter tries (but does not guarantee) to run only one
// Get call at once for a given key across an entire set of peer
// processes. Concurrent callers both in the local process and in
// other processes receive copies of the answer once the original Get
// completes.
//
// The group name must be unique for each getter.
func NewGroup(name string, cacheBytes int64, getter Getter) *Group {
return newGroup(name, cacheBytes, getter, nil)
}
// If peers is nil, the peerPicker is called via a sync.Once to initialize it.
func newGroup(name string, cacheBytes int64, getter Getter, peers PeerPicker) *Group {
if getter == nil {
panic("nil Getter")
}
mu.Lock()
defer mu.Unlock()
initPeerServerOnce.Do(callInitPeerServer)
if _, dup := groups[name]; dup {
panic("duplicate registration of group " + name)
}
g := &Group{
name: name,
getter: getter,
peers: peers,
cacheBytes: cacheBytes,
loadGroup: &singleflight.Group{},
}
if fn := newGroupHook; fn != nil {
fn(g)
}
groups[name] = g
return g
}
// newGroupHook, if non-nil, is called right after a new group is created.
var newGroupHook func(*Group)
// RegisterNewGroupHook registers a hook that is run each time
// a group is created.
func RegisterNewGroupHook(fn func(*Group)) {
if newGroupHook != nil {
panic("RegisterNewGroupHook called more than once")
}
newGroupHook = fn
}
// RegisterServerStart registers a hook that is run when the first
// group is created.
func RegisterServerStart(fn func()) {
if initPeerServer != nil {
panic("RegisterServerStart called more than once")
}
initPeerServer = fn
}
func callInitPeerServer() {
if initPeerServer != nil {
initPeerServer()
}
}
// A Group is a cache namespace and associated data loaded spread over
// a group of 1 or more machines.
type Group struct {
name string
getter Getter
peersOnce sync.Once
peers PeerPicker
cacheBytes int64 // limit for sum of mainCache and hotCache size
// mainCache is a cache of the keys for which this process
// (amongst its peers) is authoritative. That is, this cache
// contains keys which consistent hash on to this process's
// peer number.
mainCache cache
// hotCache contains keys/values for which this peer is not
// authoritative (otherwise they would be in mainCache), but
// are popular enough to warrant mirroring in this process to
// avoid going over the network to fetch from a peer. Having
// a hotCache avoids network hotspotting, where a peer's
// network card could become the bottleneck on a popular key.
// This cache is used sparingly to maximize the total number
// of key/value pairs that can be stored globally.
hotCache cache
// loadGroup ensures that each key is only fetched once
// (either locally or remotely), regardless of the number of
// concurrent callers.
loadGroup flightGroup
// Stats are statistics on the group.
Stats Stats
}
// flightGroup is defined as an interface which flightgroup.Group
// satisfies. We define this so that we may test with an alternate
// implementation.
type flightGroup interface {
// Done is called when Do is done.
Do(key string, fn func() (interface{}, error)) (interface{}, error)
}
// Stats are per-group statistics.
type Stats struct {
Gets AtomicInt // any Get request, including from peers
CacheHits AtomicInt // either cache was good
PeerLoads AtomicInt // either remote load or remote cache hit (not an error)
PeerErrors AtomicInt
Loads AtomicInt // (gets - cacheHits)
LoadsDeduped AtomicInt // after singleflight
LocalLoads AtomicInt // total good local loads
LocalLoadErrs AtomicInt // total bad local loads
ServerRequests AtomicInt // gets that came over the network from peers
}
// Name returns the name of the group.
func (g *Group) Name() string {
return g.name
}
func (g *Group) initPeers() {
if g.peers == nil {
g.peers = getPeers()
}
}
func (g *Group) Get(ctx Context, key string, dest Sink) error {
g.peersOnce.Do(g.initPeers)
g.Stats.Gets.Add(1)
if dest == nil {
return errors.New("groupcache: nil dest Sink")
}
value, cacheHit := g.lookupCache(key)
if cacheHit {
g.Stats.CacheHits.Add(1)
return setSinkView(dest, value)
}
// Optimization to avoid double unmarshalling or copying: keep
// track of whether the dest was already populated. One caller
// (if local) will set this; the losers will not. The common
// case will likely be one caller.
destPopulated := false
value, destPopulated, err := g.load(ctx, key, dest)
if err != nil {
return err
}
if destPopulated {
return nil
}
return setSinkView(dest, value)
}
// load loads key either by invoking the getter locally or by sending it to another machine.
func (g *Group) load(ctx Context, key string, dest Sink) (value ByteView, destPopulated bool, err error) {
g.Stats.Loads.Add(1)
viewi, err := g.loadGroup.Do(key, func() (interface{}, error) {
// Check the cache again because singleflight can only dedup calls
// that overlap concurrently. It's possible for 2 concurrent
// requests to miss the cache, resulting in 2 load() calls. An
// unfortunate goroutine scheduling would result in this callback
// being run twice, serially. If we don't check the cache again,
// cache.nbytes would be incremented below even though there will
// be only one entry for this key.
//
// Consider the following serialized event ordering for two
// goroutines in which this callback gets called twice for hte
// same key:
// 1: Get("key")
// 2: Get("key")
// 1: lookupCache("key")
// 2: lookupCache("key")
// 1: load("key")
// 2: load("key")
// 1: loadGroup.Do("key", fn)
// 1: fn()
// 2: loadGroup.Do("key", fn)
// 2: fn()
if value, cacheHit := g.lookupCache(key); cacheHit {
g.Stats.CacheHits.Add(1)
return value, nil
}
g.Stats.LoadsDeduped.Add(1)
var value ByteView
var err error
if peer, ok := g.peers.PickPeer(key); ok {
value, err = g.getFromPeer(ctx, peer, key)
if err == nil {
g.Stats.PeerLoads.Add(1)
return value, nil
}
g.Stats.PeerErrors.Add(1)
// TODO(bradfitz): log the peer's error? keep
// log of the past few for /groupcachez? It's
// probably boring (normal task movement), so not
// worth logging I imagine.
}
value, err = g.getLocally(ctx, key, dest)
if err != nil {
g.Stats.LocalLoadErrs.Add(1)
return nil, err
}
g.Stats.LocalLoads.Add(1)
destPopulated = true // only one caller of load gets this return value
g.populateCache(key, value, &g.mainCache)
return value, nil
})
if err == nil {
value = viewi.(ByteView)
}
return
}
func (g *Group) getLocally(ctx Context, key string, dest Sink) (ByteView, error) {
err := g.getter.Get(ctx, key, dest)
if err != nil {
return ByteView{}, err
}
return dest.view()
}
func (g *Group) getFromPeer(ctx Context, peer ProtoGetter, key string) (ByteView, error) {
req := &pb.GetRequest{
Group: &g.name,
Key: &key,
}
res := &pb.GetResponse{}
err := peer.Get(ctx, req, res)
if err != nil {
return ByteView{}, err
}
value := ByteView{b: res.Value}
// TODO(bradfitz): use res.MinuteQps or something smart to
// conditionally populate hotCache. For now just do it some
// percentage of the time.
if rand.Intn(10) == 0 {
g.populateCache(key, value, &g.hotCache)
}
return value, nil
}
func (g *Group) lookupCache(key string) (value ByteView, ok bool) {
if g.cacheBytes <= 0 {
return
}
value, ok = g.mainCache.get(key)
if ok {
return
}
value, ok = g.hotCache.get(key)
return
}
func (g *Group) populateCache(key string, value ByteView, cache *cache) {
if g.cacheBytes <= 0 {
return
}
cache.add(key, value)
// Evict items from cache(s) if necessary.
for {
mainBytes := g.mainCache.bytes()
hotBytes := g.hotCache.bytes()
if mainBytes+hotBytes <= g.cacheBytes {
return
}
// TODO(bradfitz): this is good-enough-for-now logic.
// It should be something based on measurements and/or
// respecting the costs of different resources.
victim := &g.mainCache
if hotBytes > mainBytes/8 {
victim = &g.hotCache
}
victim.removeOldest()
}
}
// CacheType represents a type of cache.
type CacheType int
const (
// The MainCache is the cache for items that this peer is the
// owner for.
MainCache CacheType = iota + 1
// The HotCache is the cache for items that seem popular
// enough to replicate to this node, even though it's not the
// owner.
HotCache
)
// CacheStats returns stats about the provided cache within the group.
func (g *Group) CacheStats(which CacheType) CacheStats {
switch which {
case MainCache:
return g.mainCache.stats()
case HotCache:
return g.hotCache.stats()
default:
return CacheStats{}
}
}
// cache is a wrapper around an *lru.Cache that adds synchronization,
// makes values always be ByteView, and counts the size of all keys and
// values.
type cache struct {
mu sync.RWMutex
nbytes int64 // of all keys and values
lru *lru.Cache
nhit, nget int64
nevict int64 // number of evictions
}
func (c *cache) stats() CacheStats {
c.mu.RLock()
defer c.mu.RUnlock()
return CacheStats{
Bytes: c.nbytes,
Items: c.itemsLocked(),
Gets: c.nget,
Hits: c.nhit,
Evictions: c.nevict,
}
}
func (c *cache) add(key string, value ByteView) {
c.mu.Lock()
defer c.mu.Unlock()
if c.lru == nil {
c.lru = &lru.Cache{
OnEvicted: func(key lru.Key, value interface{}) {
val := value.(ByteView)
c.nbytes -= int64(len(key.(string))) + int64(val.Len())
c.nevict++
},
}
}
c.lru.Add(key, value)
c.nbytes += int64(len(key)) + int64(value.Len())
}
func (c *cache) get(key string) (value ByteView, ok bool) {
c.mu.Lock()
defer c.mu.Unlock()
c.nget++
if c.lru == nil {
return
}
vi, ok := c.lru.Get(key)
if !ok {
return
}
c.nhit++
return vi.(ByteView), true
}
func (c *cache) removeOldest() {
c.mu.Lock()
defer c.mu.Unlock()
if c.lru != nil {
c.lru.RemoveOldest()
}
}
func (c *cache) bytes() int64 {
c.mu.RLock()
defer c.mu.RUnlock()
return c.nbytes
}
func (c *cache) items() int64 {
c.mu.RLock()
defer c.mu.RUnlock()
return c.itemsLocked()
}
func (c *cache) itemsLocked() int64 {
if c.lru == nil {
return 0
}
return int64(c.lru.Len())
}
// An AtomicInt is an int64 to be accessed atomically.
type AtomicInt int64
// Add atomically adds n to i.
func (i *AtomicInt) Add(n int64) {
atomic.AddInt64((*int64)(i), n)
}
// Get atomically gets the value of i.
func (i *AtomicInt) Get() int64 {
return atomic.LoadInt64((*int64)(i))
}
func (i *AtomicInt) String() string {
return strconv.FormatInt(i.Get(), 10)
}
// CacheStats are returned by stats accessors on Group.
type CacheStats struct {
Bytes int64
Items int64
Gets int64
Hits int64
Evictions int64
}

View File

@ -1,227 +0,0 @@
/*
Copyright 2013 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package groupcache
import (
"bytes"
"fmt"
"io"
"net/http"
"net/url"
"strings"
"sync"
"github.com/golang/groupcache/consistenthash"
pb "github.com/golang/groupcache/groupcachepb"
"github.com/golang/protobuf/proto"
)
const defaultBasePath = "/_groupcache/"
const defaultReplicas = 50
// HTTPPool implements PeerPicker for a pool of HTTP peers.
type HTTPPool struct {
// Context optionally specifies a context for the server to use when it
// receives a request.
// If nil, the server uses a nil Context.
Context func(*http.Request) Context
// Transport optionally specifies an http.RoundTripper for the client
// to use when it makes a request.
// If nil, the client uses http.DefaultTransport.
Transport func(Context) http.RoundTripper
// this peer's base URL, e.g. "https://example.net:8000"
self string
// opts specifies the options.
opts HTTPPoolOptions
mu sync.Mutex // guards peers and httpGetters
peers *consistenthash.Map
httpGetters map[string]*httpGetter // keyed by e.g. "http://10.0.0.2:8008"
}
// HTTPPoolOptions are the configurations of a HTTPPool.
type HTTPPoolOptions struct {
// BasePath specifies the HTTP path that will serve groupcache requests.
// If blank, it defaults to "/_groupcache/".
BasePath string
// Replicas specifies the number of key replicas on the consistent hash.
// If blank, it defaults to 50.
Replicas int
// HashFn specifies the hash function of the consistent hash.
// If blank, it defaults to crc32.ChecksumIEEE.
HashFn consistenthash.Hash
}
// NewHTTPPool initializes an HTTP pool of peers, and registers itself as a PeerPicker.
// For convenience, it also registers itself as an http.Handler with http.DefaultServeMux.
// The self argument be a valid base URL that points to the current server,
// for example "http://example.net:8000".
func NewHTTPPool(self string) *HTTPPool {
p := NewHTTPPoolOpts(self, nil)
http.Handle(p.opts.BasePath, p)
return p
}
var httpPoolMade bool
// NewHTTPPoolOpts initializes an HTTP pool of peers with the given options.
// Unlike NewHTTPPool, this function does not register the created pool as an HTTP handler.
// The returned *HTTPPool implements http.Handler and must be registered using http.Handle.
func NewHTTPPoolOpts(self string, o *HTTPPoolOptions) *HTTPPool {
if httpPoolMade {
panic("groupcache: NewHTTPPool must be called only once")
}
httpPoolMade = true
p := &HTTPPool{
self: self,
httpGetters: make(map[string]*httpGetter),
}
if o != nil {
p.opts = *o
}
if p.opts.BasePath == "" {
p.opts.BasePath = defaultBasePath
}
if p.opts.Replicas == 0 {
p.opts.Replicas = defaultReplicas
}
p.peers = consistenthash.New(p.opts.Replicas, p.opts.HashFn)
RegisterPeerPicker(func() PeerPicker { return p })
return p
}
// Set updates the pool's list of peers.
// Each peer value should be a valid base URL,
// for example "http://example.net:8000".
func (p *HTTPPool) Set(peers ...string) {
p.mu.Lock()
defer p.mu.Unlock()
p.peers = consistenthash.New(p.opts.Replicas, p.opts.HashFn)
p.peers.Add(peers...)
p.httpGetters = make(map[string]*httpGetter, len(peers))
for _, peer := range peers {
p.httpGetters[peer] = &httpGetter{transport: p.Transport, baseURL: peer + p.opts.BasePath}
}
}
func (p *HTTPPool) PickPeer(key string) (ProtoGetter, bool) {
p.mu.Lock()
defer p.mu.Unlock()
if p.peers.IsEmpty() {
return nil, false
}
if peer := p.peers.Get(key); peer != p.self {
return p.httpGetters[peer], true
}
return nil, false
}
func (p *HTTPPool) ServeHTTP(w http.ResponseWriter, r *http.Request) {
// Parse request.
if !strings.HasPrefix(r.URL.Path, p.opts.BasePath) {
panic("HTTPPool serving unexpected path: " + r.URL.Path)
}
parts := strings.SplitN(r.URL.Path[len(p.opts.BasePath):], "/", 2)
if len(parts) != 2 {
http.Error(w, "bad request", http.StatusBadRequest)
return
}
groupName := parts[0]
key := parts[1]
// Fetch the value for this group/key.
group := GetGroup(groupName)
if group == nil {
http.Error(w, "no such group: "+groupName, http.StatusNotFound)
return
}
var ctx Context
if p.Context != nil {
ctx = p.Context(r)
}
group.Stats.ServerRequests.Add(1)
var value []byte
err := group.Get(ctx, key, AllocatingByteSliceSink(&value))
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
// Write the value to the response body as a proto message.
body, err := proto.Marshal(&pb.GetResponse{Value: value})
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.Header().Set("Content-Type", "application/x-protobuf")
w.Write(body)
}
type httpGetter struct {
transport func(Context) http.RoundTripper
baseURL string
}
var bufferPool = sync.Pool{
New: func() interface{} { return new(bytes.Buffer) },
}
func (h *httpGetter) Get(context Context, in *pb.GetRequest, out *pb.GetResponse) error {
u := fmt.Sprintf(
"%v%v/%v",
h.baseURL,
url.QueryEscape(in.GetGroup()),
url.QueryEscape(in.GetKey()),
)
req, err := http.NewRequest("GET", u, nil)
if err != nil {
return err
}
tr := http.DefaultTransport
if h.transport != nil {
tr = h.transport(context)
}
res, err := tr.RoundTrip(req)
if err != nil {
return err
}
defer res.Body.Close()
if res.StatusCode != http.StatusOK {
return fmt.Errorf("server returned: %v", res.Status)
}
b := bufferPool.Get().(*bytes.Buffer)
b.Reset()
defer bufferPool.Put(b)
_, err = io.Copy(b, res.Body)
if err != nil {
return fmt.Errorf("reading response body: %v", err)
}
err = proto.Unmarshal(b.Bytes(), out)
if err != nil {
return fmt.Errorf("decoding response body: %v", err)
}
return nil
}

View File

@ -1,71 +0,0 @@
/*
Copyright 2012 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// peers.go defines how processes find and communicate with their peers.
package groupcache
import (
pb "github.com/golang/groupcache/groupcachepb"
)
// Context is an opaque value passed through calls to the
// ProtoGetter. It may be nil if your ProtoGetter implementation does
// not require a context.
type Context interface{}
// ProtoGetter is the interface that must be implemented by a peer.
type ProtoGetter interface {
Get(context Context, in *pb.GetRequest, out *pb.GetResponse) error
}
// PeerPicker is the interface that must be implemented to locate
// the peer that owns a specific key.
type PeerPicker interface {
// PickPeer returns the peer that owns the specific key
// and true to indicate that a remote peer was nominated.
// It returns nil, false if the key owner is the current peer.
PickPeer(key string) (peer ProtoGetter, ok bool)
}
// NoPeers is an implementation of PeerPicker that never finds a peer.
type NoPeers struct{}
func (NoPeers) PickPeer(key string) (peer ProtoGetter, ok bool) { return }
var (
portPicker func() PeerPicker
)
// RegisterPeerPicker registers the peer initialization function.
// It is called once, when the first group is created.
func RegisterPeerPicker(fn func() PeerPicker) {
if portPicker != nil {
panic("RegisterPeerPicker called more than once")
}
portPicker = fn
}
func getPeers() PeerPicker {
if portPicker == nil {
return NoPeers{}
}
pk := portPicker()
if pk == nil {
pk = NoPeers{}
}
return pk
}

View File

@ -1,322 +0,0 @@
/*
Copyright 2012 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package groupcache
import (
"errors"
"github.com/golang/protobuf/proto"
)
// A Sink receives data from a Get call.
//
// Implementation of Getter must call exactly one of the Set methods
// on success.
type Sink interface {
// SetString sets the value to s.
SetString(s string) error
// SetBytes sets the value to the contents of v.
// The caller retains ownership of v.
SetBytes(v []byte) error
// SetProto sets the value to the encoded version of m.
// The caller retains ownership of m.
SetProto(m proto.Message) error
// view returns a frozen view of the bytes for caching.
view() (ByteView, error)
}
func cloneBytes(b []byte) []byte {
c := make([]byte, len(b))
copy(c, b)
return c
}
func setSinkView(s Sink, v ByteView) error {
// A viewSetter is a Sink that can also receive its value from
// a ByteView. This is a fast path to minimize copies when the
// item was already cached locally in memory (where it's
// cached as a ByteView)
type viewSetter interface {
setView(v ByteView) error
}
if vs, ok := s.(viewSetter); ok {
return vs.setView(v)
}
if v.b != nil {
return s.SetBytes(v.b)
}
return s.SetString(v.s)
}
// StringSink returns a Sink that populates the provided string pointer.
func StringSink(sp *string) Sink {
return &stringSink{sp: sp}
}
type stringSink struct {
sp *string
v ByteView
// TODO(bradfitz): track whether any Sets were called.
}
func (s *stringSink) view() (ByteView, error) {
// TODO(bradfitz): return an error if no Set was called
return s.v, nil
}
func (s *stringSink) SetString(v string) error {
s.v.b = nil
s.v.s = v
*s.sp = v
return nil
}
func (s *stringSink) SetBytes(v []byte) error {
return s.SetString(string(v))
}
func (s *stringSink) SetProto(m proto.Message) error {
b, err := proto.Marshal(m)
if err != nil {
return err
}
s.v.b = b
*s.sp = string(b)
return nil
}
// ByteViewSink returns a Sink that populates a ByteView.
func ByteViewSink(dst *ByteView) Sink {
if dst == nil {
panic("nil dst")
}
return &byteViewSink{dst: dst}
}
type byteViewSink struct {
dst *ByteView
// if this code ever ends up tracking that at least one set*
// method was called, don't make it an error to call set
// methods multiple times. Lorry's payload.go does that, and
// it makes sense. The comment at the top of this file about
// "exactly one of the Set methods" is overly strict. We
// really care about at least once (in a handler), but if
// multiple handlers fail (or multiple functions in a program
// using a Sink), it's okay to re-use the same one.
}
func (s *byteViewSink) setView(v ByteView) error {
*s.dst = v
return nil
}
func (s *byteViewSink) view() (ByteView, error) {
return *s.dst, nil
}
func (s *byteViewSink) SetProto(m proto.Message) error {
b, err := proto.Marshal(m)
if err != nil {
return err
}
*s.dst = ByteView{b: b}
return nil
}
func (s *byteViewSink) SetBytes(b []byte) error {
*s.dst = ByteView{b: cloneBytes(b)}
return nil
}
func (s *byteViewSink) SetString(v string) error {
*s.dst = ByteView{s: v}
return nil
}
// ProtoSink returns a sink that unmarshals binary proto values into m.
func ProtoSink(m proto.Message) Sink {
return &protoSink{
dst: m,
}
}
type protoSink struct {
dst proto.Message // authorative value
typ string
v ByteView // encoded
}
func (s *protoSink) view() (ByteView, error) {
return s.v, nil
}
func (s *protoSink) SetBytes(b []byte) error {
err := proto.Unmarshal(b, s.dst)
if err != nil {
return err
}
s.v.b = cloneBytes(b)
s.v.s = ""
return nil
}
func (s *protoSink) SetString(v string) error {
b := []byte(v)
err := proto.Unmarshal(b, s.dst)
if err != nil {
return err
}
s.v.b = b
s.v.s = ""
return nil
}
func (s *protoSink) SetProto(m proto.Message) error {
b, err := proto.Marshal(m)
if err != nil {
return err
}
// TODO(bradfitz): optimize for same-task case more and write
// right through? would need to document ownership rules at
// the same time. but then we could just assign *dst = *m
// here. This works for now:
err = proto.Unmarshal(b, s.dst)
if err != nil {
return err
}
s.v.b = b
s.v.s = ""
return nil
}
// AllocatingByteSliceSink returns a Sink that allocates
// a byte slice to hold the received value and assigns
// it to *dst. The memory is not retained by groupcache.
func AllocatingByteSliceSink(dst *[]byte) Sink {
return &allocBytesSink{dst: dst}
}
type allocBytesSink struct {
dst *[]byte
v ByteView
}
func (s *allocBytesSink) view() (ByteView, error) {
return s.v, nil
}
func (s *allocBytesSink) setView(v ByteView) error {
if v.b != nil {
*s.dst = cloneBytes(v.b)
} else {
*s.dst = []byte(v.s)
}
s.v = v
return nil
}
func (s *allocBytesSink) SetProto(m proto.Message) error {
b, err := proto.Marshal(m)
if err != nil {
return err
}
return s.setBytesOwned(b)
}
func (s *allocBytesSink) SetBytes(b []byte) error {
return s.setBytesOwned(cloneBytes(b))
}
func (s *allocBytesSink) setBytesOwned(b []byte) error {
if s.dst == nil {
return errors.New("nil AllocatingByteSliceSink *[]byte dst")
}
*s.dst = cloneBytes(b) // another copy, protecting the read-only s.v.b view
s.v.b = b
s.v.s = ""
return nil
}
func (s *allocBytesSink) SetString(v string) error {
if s.dst == nil {
return errors.New("nil AllocatingByteSliceSink *[]byte dst")
}
*s.dst = []byte(v)
s.v.b = nil
s.v.s = v
return nil
}
// TruncatingByteSliceSink returns a Sink that writes up to len(*dst)
// bytes to *dst. If more bytes are available, they're silently
// truncated. If fewer bytes are available than len(*dst), *dst
// is shrunk to fit the number of bytes available.
func TruncatingByteSliceSink(dst *[]byte) Sink {
return &truncBytesSink{dst: dst}
}
type truncBytesSink struct {
dst *[]byte
v ByteView
}
func (s *truncBytesSink) view() (ByteView, error) {
return s.v, nil
}
func (s *truncBytesSink) SetProto(m proto.Message) error {
b, err := proto.Marshal(m)
if err != nil {
return err
}
return s.setBytesOwned(b)
}
func (s *truncBytesSink) SetBytes(b []byte) error {
return s.setBytesOwned(cloneBytes(b))
}
func (s *truncBytesSink) setBytesOwned(b []byte) error {
if s.dst == nil {
return errors.New("nil TruncatingByteSliceSink *[]byte dst")
}
n := copy(*s.dst, b)
if n < len(*s.dst) {
*s.dst = (*s.dst)[:n]
}
s.v.b = b
s.v.s = ""
return nil
}
func (s *truncBytesSink) SetString(v string) error {
if s.dst == nil {
return errors.New("nil TruncatingByteSliceSink *[]byte dst")
}
n := copy(*s.dst, v)
if n < len(*s.dst) {
*s.dst = (*s.dst)[:n]
}
s.v.b = nil
s.v.s = v
return nil
}

15
glide.lock generated
View File

@ -1,5 +1,5 @@
hash: 0e7d50c7716873a35f2d14542747525a35af1e5bb734b3696bc1ff78d30107b4
updated: 2016-09-23T12:52:52.300796603-07:00
hash: 8363b260167c451ce8e3863fe01e234808b4598d1025ceefb8bdb11fb0ce83ca
updated: 2016-10-10T10:59:55.934552225-07:00
imports:
- name: bitbucket.org/ww/goautoneg
version: 75cd24fc2f2c2a2088577d12123ddee5f54e0675
@ -100,10 +100,6 @@ imports:
version: 1c44ec8d3f1552cac48999f9306da23c4d8a288b
- name: github.com/spf13/pflag
version: 08b1a584251b5b62f458943640fc8ebd4d50aaa5
- name: github.com/stretchr/testify
version: 9cc77fa25329013ce07362c7742952ff887361f2
subpackages:
- assert
- name: github.com/ugorji/go
version: f1f1a805ed361a0e078bb537e4ea78cd37dcf065
subpackages:
@ -148,4 +144,9 @@ imports:
version: 29ad9b62f9e0274422d738242b94a5b89440bfa6
- name: gopkg.in/yaml.v2
version: 53feefa2559fb8dfa8d81baad31be332c97d6c77
testImports: []
testImports:
- name: github.com/stretchr/testify
version: ""
repo: https://github.com/stretchr/testify.git
subpackages:
- assert

View File

@ -98,10 +98,6 @@ import:
version: 1c44ec8d3f1552cac48999f9306da23c4d8a288b
- package: github.com/spf13/pflag
version: 08b1a584251b5b62f458943640fc8ebd4d50aaa5
- package: github.com/stretchr/testify
version: 9cc77fa25329013ce07362c7742952ff887361f2
subpackages:
- assert
- package: github.com/ugorji/go
version: f1f1a805ed361a0e078bb537e4ea78cd37dcf065
subpackages:
@ -146,3 +142,10 @@ import:
version: 29ad9b62f9e0274422d738242b94a5b89440bfa6
- package: gopkg.in/yaml.v2
version: 53feefa2559fb8dfa8d81baad31be332c97d6c77
testImport:
- package: github.com/stretchr/testify
repo: https://github.com/stretchr/testify.git
version: 976c720a22c8eb4eb6a0b4348ad85ad12491a506
subpackages:
- assert