mirror of
https://github.com/etcd-io/etcd.git
synced 2024-09-27 06:25:44 +00:00
4.1 KiB
4.1 KiB
Design
-
Flatten binary key-value space
-
Keep the event history until compaction
- access to old version of keys
- user controlled history compaction
-
Support range query
- Pagination support with limit argument
- Support consistency guarantee across multiple range queries
-
Replace TTL key with Lease
- more efficient/ low cost keep alive
- a logical group of TTL keys
-
Replace CAS/CAD with multi-object Txn
- MUCH MORE powerful and flexible
-
Support efficient watching with multiple ranges
-
RPC API supports the completed set of APIs.
- more efficient than JSON/HTTP
- additional txn/lease support
-
HTTP API supports a subset of APIs.
- easy for people to try out etcd
- easy for people to write simple etcd application
Protobuf Defined API
Examples
Put a key (foo=bar)
// A put is always successful
Put( PutRequest { key = foo, value = bar } )
PutResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 1,
raft_term = 0x1,
}
Get a key (assume we have foo=bar)
Get ( RangeRequest { key = foo } )
RangeResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 1,
raft_term = 0x1,
kvs = {
{
key = foo,
value = bar,
create_revision = 1,
mod_revision = 1,
version = 1;
},
},
}
Range over a key space (assume we have foo0=bar0… foo100=bar100)
Range ( RangeRequest { key = foo, end_key = foo80, limit = 30 } )
RangeResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 100,
raft_term = 0x1,
kvs = {
{
key = foo0,
value = bar0,
create_revision = 1,
mod_revision = 1,
version = 1;
},
...,
{
key = foo30,
value = bar30,
create_revision = 30,
mod_revision = 30,
version = 1;
},
},
}
Finish a txn (assume we have foo0=bar0, foo1=bar1)
Txn(TxnRequest {
// mod_revision of foo0 is equal to 1, mod_revision of foo1 is greater than 1
compare = {
{compareType = equal, key = foo0, mod_revision = 1},
{compareType = greater, key = foo1, mod_revision = 1}}
},
// if the comparison succeeds, put foo2 = bar2
success = {PutRequest { key = foo2, value = success }},
// if the comparison fails, put foo2=fail
failure = {PutRequest { key = foo2, value = failure }},
)
TxnResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 3,
raft_term = 0x1,
succeeded = true,
responses = {
// response of PUT foo2=success
{
cluster_id = 0x1000,
member_id = 0x1,
revision = 3,
raft_term = 0x1,
}
}
}
Watch on a key/range
Watch( WatchRequest{
key = foo,
end_key = fop, // prefix foo
start_revision = 20,
end_revision = 10000,
// server decided notification frequency
progress_notification = true,
}
… // this can be a watch request stream
)
// put (foo0=bar0) event at 3
WatchResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 3,
raft_term = 0x1,
event_type = put,
kv = {
key = foo0,
value = bar0,
create_revision = 1,
mod_revision = 1,
version = 1;
},
}
…
// a notification at 2000
WatchResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 2000,
raft_term = 0x1,
// nil event as notification
}
…
// put (foo0=bar3000) event at 3000
WatchResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 3000,
raft_term = 0x1,
event_type = put,
kv = {
key = foo0,
value = bar3000,
create_revision = 1,
mod_revision = 3000,
version = 2;
},
}
…