The tests work correctly in Epiphany, but not in the WebKit build,
where the native X25519 implementation throws non-standard errors on
importKey (DataError) and generateKey (OperationError).
Patching this would be simply a matter of catching such errors and falling back
to the JS implementation, but since only the CI WebKit build seems to be
affected, we prefer not to relax fallback checks in the context of crypto
operations without issues reported in the wild.
Reverting commit ccb040ae96acd127a29161ffaf3b82b5b18c062f .
Firefox has fixed support in v132 (https://bugzilla.mozilla.org/show_bug.cgi?id=1918354)
usage of v130 and 131, which have a broken implementation, is now below 1%.
Also, Chrome has released support in v133.
iOS tests sometimes fail to start due to some "server disconnect" issue on BS side.
This seems more prominent on certain devices (e.g. iPhone 16 with iOS 18).
So, we also change the 'iOS latest' target to a more stable one.
To avoid issues with the lightweight build:
for now it works fine, but it could mess up chunking in the future,
and it already results in a circular import.
The existing md5 module brought in the util module,
which messed up the chunking structure in the lightweight build;
inlining those functions is an option, but the noble-hashes code
is also more modern and readable.
Every submodule under the 'crypto' directory was exported-imported
even if a handful of functions where actually needed.
We now only export entire modules behind default exports if it makes
sense for readability and if the different submodules would be
imported together anyway (e.g. `cipherMode` exports are all needed
by the SEIPD class).
We've also dropped exports that are not used outside of the crypto modules,
e.g. pkcs5 helpers.
This adds back support for decrypting password-protected messages which
were encrypted in OpenPGP.js v5 with custom config settings
`config.aeadProtect = true` together with
`config.preferredAEADAlgorithm = openpgp.enums.aead.experimentalGCM`.
Public-key-encrypted messages are affected if they were encrypted using the same config, while also providing `encryptionKeys` that declared `experimentalGCM` in their AEAD prefs.
Such keys could be generated in OpenPGP.js v5 by setting the aforementioned config values.
`experimentalGCM` should not be used anymore,
as a different a different algorithm ID was standardized
for GCM, and using the experimental value could give
interoperability issues with e.g. SEIPDv2 and AEAD-encrypted keys.
We could also drop the browser's directive `"./dist/node/openpgp.min.cjs": "./dist/openpgp.min.js"`,
since that build cannot be used with `require()`, and it's instead meant
to be the target of <script> tags.
But we keep it around for now to avoid potentially breaking changes, in case it's
used in some setups.
The `expect().to.not.throw` check as written is a no-op.
In fact, `throw` should have been called as a function.
We drop the relevant check altogether since if the wrapped
operation throws, the test will naturally fail due to the
unexpected error.
This affects the preferences of newly generated keys, which by default will
have SHA512 as first hash algo preference.
SHA512 will also be used when signing, as long as the recipient keys declare
support for the algorithm.
If given, the signature will be generated using the preferred hash algo from the recipient keys.
Otherwise, the signing key preferences are used (this was also the existing behavior).
Note: when signing through `openpgp.encrypt`, the `encryptionKeys` are automatically used as recipient keys.
In `openpgp.sign`, the signing key preferences are considered instead,
since no "recipient keys" are available.
The hash algo selection logic has been reworked as follows:
if `config.preferredHashAlgo` appears in the prefs of all recipients, we pick it;
otherwise, we use the strongest supported algo (note: SHA256 is always implicitly supported by all keys),
as long as it is compatible with the signing key (e.g. ECC keys require minimum digest sizes).
Previously, only the preferences of the signing key were used to determine the hash algo to use,
but this is in contrast to the RFC: https://www.rfc-editor.org/rfc/rfc9580.html#section-5.2.3.16-2 .
Also, an algo stronger than `config.preferredHashAlgo` would be used, if the signing key
declared it as first preference.
With this change, `config.preferredHashAlgo` is picked even if it's weaker than the
preferences of the recipient keys.
To test platform potential specific code of e.g. the WebCrypto API
Testing on Windows would be nice too, but all browsers fail to fetch resources
from the web-test-runner server.