In case of equal creation timestamps, pick the signing/encryption subkey
with the highest algorithm ID, on the assumption that that's the most
modern/secure algorithm.
The `expect().to.not.throw` check as written is a no-op.
In fact, `throw` should have been called as a function.
We drop the relevant check altogether since if the wrapped
operation throws, the test will naturally fail due to the
unexpected error.
This affects the preferences of newly generated keys, which by default will
have SHA512 as first hash algo preference.
SHA512 will also be used when signing, as long as the recipient keys declare
support for the algorithm.
In `openpgp.sign`, the signing key preferences are considered instead,
since no "recipient keys" are available.
The hash algo selection logic has been reworked as follows:
if `config.preferredHashAlgo` appears in the prefs of all recipients, we pick it;
otherwise, we use the strongest supported algo (note: SHA256 is always implicitly supported by all keys),
as long as it is compatible with the signing key (e.g. ECC keys require minimum digest sizes).
Previously, only the preferences of the signing key were used to determine the hash algo to use,
but this is in contrast to the RFC: https://www.rfc-editor.org/rfc/rfc9580.html#section-5.2.3.16-2 .
Also, an algo stronger than `config.preferredHashAlgo` would be used, if the signing key
declared it as first preference.
With this change, `config.preferredHashAlgo` is picked even if it's weaker than the
preferences of the recipient keys.
Signature parsing would fail in case of unexpected payload sizes, causing key parsing to always throw
when processing e.g. an (unsupported) Curve448Legacy subkey instead of ignoring it.
To address this, we now throw on signature verification instead of parsing (as done for ECDSA).
NB: the bug and this fix are not relevant for the new Ed25519/Ed448 entities as standardized by the crypto-refresh.
To avoid returning dummy key packets, and improving error reporting.
This new behavior is also better aligned with that of `Key.getSigningKey()`.
This is a breaking change for apps that call `getDecryptionKeys()` directly.
The related error messages returned by `openpgp.decrypt` have also changed,
becoming more specific.
This change is also made in preparation of supporting private keys with
public key packets.
Stick more closely to the algorithm preferences when creating an SEIPDv2
message, by trying additional combinations of the preferred symmetric algorithm
and the preferred AEAD algorithm. If one of them is supported but not the
other, we still use it (with the mandatory-to-implement algorithm for the other
one).
Parsing of v5 keys, v5 signatures and AEAD-encrypted data packets now requires turning on
the corresponding config flag.
The affected entities are non-standard, and in the crypto-refresh RFC they have been superseded by
v6 keys, v6 signatures and SEIPDv2 encrypted data, respectively.
However, generation of v5 entities was supported behind config flag in OpenPGP.js v5, and some other libraries,
hence parsing them might be necessary in some cases.
We need to include the checksum to work around a GnuPG bug where data fails to
be decoded if the base64 ends with no padding chars (=) (see https://dev.gnupg.org/T7071).
Pure v6 artifacts are unaffected and won't include the checksum, as mandated by
the spec.
Breaking change:
`openpgp.armor` takes an additional `emitChecksum` argument (defaults to
false).
NB: some types of data must not include the checksum, but compliance is left as
responsibility of the caller: this function does not carry out any checks.
Refer to the crypto-refresh RFC for more details.
---------
Co-authored-by: Daniel Huigens <d.huigens@protonmail.com>
Unclear motivation for adding the original config option; if an expiration is there, it should
be honoured.
Breaking change:
the option used to default to `false`, and ignore revocation expirations. We now honour
those expirations, namely match the behaviour resulting from setting the option to `true`.
Breaking change: the requirements of `config.minRSABits`, `rejectPublicKeyAlgorithms` and `rejectCurves`
are now applied to the primary key, aside from the selected subkey.
The motivation is that the subkeys are certified by the primary key, but if the latter is
weak, arbitrary subkeys could potentially be added.
Note that the change does not affect decryption, to allow decrypting older messages.
This is a breaking change, as NIST curves identifiers and values in
`enums.curves` have been renamed:
- the identifiers `enums.curve.p256`, `.p384`, `.p521` are now marked as
`@deprecated`
- the new identifiers are, respectively: `enums.curve.nistP256`, `.nistP384`,
`.nistP521`.
- the corresponding values have been changed from `'p256'`,`'p384'`,`'p521'` to
`'nistP256'`, `'nistP384'`, `'nistP521'`.
Affected high-level API functions:
- in `generateKey`, the `options.curve` argument will expect the updated string
values
- `Key.getAlgorithmInfo()` will return the updated `curve` values
The config option must be set when reading v4 private keys (e.g. those
generated in OpenPGP.js by default, without setting `config.v5Keys = true`)
which were encrypted by OpenPGP.js v5 (or older) using `config.aeadProtect = true`.
Otherwise, key parsing and/or key decryption will fail.
Additional context: OpenPGP.js up to v5 used to support encrypting v4 keys
using AEAD as specified by draft RFC4880bis
(https://www.ietf.org/archive/id/draft-ietf-openpgp-rfc4880bis-10.html#section-5.5.3-3.5).
Said AEAD mechanism was not standardized as-is, and it's been replaced in the
crypto-refresh with a new version that guarantees full key integrity on decryption.
The legacy AEAD format is incompatible, but fundamentally indistinguishable,
from that of the crypto-refresh for v4 keys. Thus, we rely on the caller to
instruct us to process the key as legacy, via the new config flag.
Co-authored-by: Daniel Huigens <d.huigens@protonmail.com>
This is to signal support to senders who wish to use these algos.
Note that SHA256 remains as first default preference, followed by SHA512,
as in the context of OpenPGP signatures they provide
better performance/security ratio than their SHA3 counterparts.
Key flags are needed to restrict key usage to specific purposes:
https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#section-5.2.3.29 .
Some older keys (e.g. from OpenPGP.js v1) do not declare any key flags.
In previous OpenPGP.js versions, we've allowed such keys to be used for any operation for which they were compatible.
This behaviour has now changed, and these keys are not allowed to be used for any operation.
The setting `config.allowMissingKeyFlags` has been added to selectively revert to the past behaviour.
As per the spec, v6 keys must not use the legacy curve25519 format.
The new format is not used by default with v4 keys as it's not compatible with OpenPGP.js older than v5.10.0 .
However, v6 keys already break compatibility, so if the user requests them via config flag, we can safely use the new curve format as well.
Instead of calling getPreferredAlgo('symmetric') and
getPreferredAlgo('aead'), we define and call getPreferredCipherSuite()
to determine the preferred symmetric and AEAD algorithm.
Additionally, we remove isAEADSupported(), instead we return
aeadAlgorithm: undefined from getPreferredCipherSuite() if AEAD is not
supported (CFB is used instead).
And finally, we define getPreferredCompressionAlgo() to replace
getPreferredAlgo('compression').
Mocha v10 requires the lib to be esm compliant.
ESM mandates the use of file extensions in imports, so to minimize the
changes (for now), we rely on the flag `experimental-specifier-resolution=node`
and on `ts-node` (needed only for Node 20).
Breaking changes:
downstream bundlers might be affected by the package.json changes depending on
how they load the library.
NB: legacy package.json entrypoints are still available.
Set to replace `enums.curve.ed25519` (resp. `.curve25519`), which can still be used everywhere,
but it will be dropped in v6.
Deprecation notices have been added to ease transition.
As specified in openpgp-crypto-refresh-09.
Instead of encoding the symmetric key algorithm in the PKESK ciphertext (requiring padding),
the symmetric key algorithm is left unencrypted.
Co-authored-by: Lukas Burkhalter <lukas.burkhalter@proton.ch>
Such keys are still capable of encryption and signature verification.
This change is relevant for forward compatibility of v4 keys encrypted using e.g. argon2.
Previously, `verifyAllUsers` would fail on keys with User Attributes.
Now, it returns a list of objects that have a either a non-null `userID`
property (in the case of User IDs) or a non-null `userAttribute`
property that contains the User Attribute packet.
Co-authored-by: Daniel Huigens <d.huigens@protonmail.com>
Breaking change:
when generating new subkeys through `key.addSubkey()`, we now check
`config.rejectCurves` and prevent adding subkeys using the corresponding
curves.
By default, `config.rejectCurves` includes the brainpool curves
(`brainpoolP256r1`, `brainpoolP384r1`, `brainpoolP512r1`) and the Bitcoin curve
(`secp256k1`).
This is a follow up to #1395 , which introduced the same check to
`openpgp.generateKey`.
Breaking changes:
- a new `format` option has been added to `openpgp.encrypt`, `sign` and
`encryptSessionKey` to select the format of the output message. `format`
replaces the existing `armor` option, and accepts three values:
* if `format: 'armor'` (default), an armored signed/encrypted message is
returned (same as `armor: true`).
* if `format: 'binary'`, a binary signed/encrypted message is returned (same
as `armor: false`).
* if `format: 'object'`, a Message or Signature object is returned (this was
not supported before).
This change is to uniform the output format selection across all top-level
functions (following up to #1345).
- All top-level functions now throw if unrecognised options are passed, to make
library users aware that those options are not being applied.