Avoid rearranging all caches (#1483)

* avoid rearranging all kv_caches

* avoid calculating the same kv_cache from cross attn

* Update decoding.py

* linter fix

---------

Co-authored-by: Jong Wook Kim <jongwook@openai.com>
This commit is contained in:
WangChou Lu 2023-07-07 03:48:08 +08:00 committed by GitHub
parent f572f2161b
commit b91c907694
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -146,6 +146,10 @@ class PyTorchInference(Inference):
self.kv_cache = {}
self.hooks = []
key_modules = [block.attn.key for block in self.model.decoder.blocks]
value_modules = [block.attn.value for block in self.model.decoder.blocks]
self.kv_modules = key_modules + value_modules
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
if not self.kv_cache:
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
@ -164,9 +168,10 @@ class PyTorchInference(Inference):
self.hooks = []
def rearrange_kv_cache(self, source_indices):
for module, tensor in self.kv_cache.items():
# update the key/value cache to contain the selected sequences
self.kv_cache[module] = tensor[source_indices].detach()
if source_indices != list(range(len(source_indices))):
for module in self.kv_modules:
# update the key/value cache to contain the selected sequences
self.kv_cache[module] = self.kv_cache[module][source_indices].detach()
class SequenceRanker:
@ -668,7 +673,6 @@ class DecodingTask:
return languages, lang_probs
def _main_loop(self, audio_features: Tensor, tokens: Tensor):
assert audio_features.shape[0] == tokens.shape[0]
n_batch = tokens.shape[0]
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
no_speech_probs = [np.nan] * n_batch
@ -721,8 +725,7 @@ class DecodingTask:
)
]
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
# repeat text tensors by the group size, for beam search or best-of-n sampling
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
# call the main sampling loop